精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$,若函数y=f(x)-k有且只有两个零点,则实数k的取值范围是($\frac{1}{2}$,+∞).

分析 根据题意,分析可得若函数y=f(x)-k有且只有两个零点,则函数y=f(x)的图象与直线y=k有且只有两个交点;作出函数y=f(x)的图象,分析直线y=k与其图象有且只有两个交点时k的取值范围,即可得答案.

解答 解:根据题意,若函数y=f(x)-k有且只有两个零点,
则函数y=f(x)的图象与直线y=k有且只有两个交点,
而函数f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$,其图象如图,
若直线y=k与其图象有且只有两个交点,必有k>$\frac{1}{2}$,即实数k的取值范围是($\frac{1}{2}$,+∞);
故答案为:($\frac{1}{2}$,+∞).

点评 本题考查函数零点的判断方法,关键是将函数零点的个数转化为函数图象的交点个数的问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知动点P到点M(-1,0)的距离与它到直线x=1的距离相等.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)若直线l:x+y+1=0与动点P的轨迹交于A,B两点,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x>1成立的充分不必要条件是x>a,则实数a的取值范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知锐角△ABC的面积为2$\sqrt{3}$,AB=2,BC=4,则三角形的外接圆半径为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线x2=2py (p>0),其焦点F到准线的距离为1.过F作抛物线的两条弦AB和CD,且M,N分别是AB,CD的中点.设直线AB、CD的斜率分别为k1、k2
(1)若AB⊥CD,且k1=1,求△FMN的面积;
(2)若$\frac{1}{k_1}+\frac{1}{k_2}=1$,求证:直线MN过定点,并求此定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设△ABC三个内角A,B,C所对的边分别为a,b,c,若a2sinC=4sinA,(ca+cb)(sinA-sinB)=sinC(2$\sqrt{7}$-c2),则△ABC的面积为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在四棱锥P-ABCD中,PA⊥底面ABCD,其中PA=2AB=2AD=2,G为三角形BCD的重心,则PG与底面ABCD所成角的正弦值为(  )
A.$3\sqrt{2}$B.$\frac{3\sqrt{11}}{11}$C.$\frac{{\sqrt{19}}}{19}$D.$\frac{{3\sqrt{19}}}{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,设P是圆x2+y2=6上的动点,点D是P在x轴上的投影,M为PD上一点,且$\overrightarrow{DP}=\sqrt{2}\overrightarrow{DM}$.
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)若点Q(1,1)恰为直线l与曲线C相交弦的中点,试确定直线l的方程;
(3)直线$x+y-\sqrt{3}=0$与曲线C相交于E、G两点,F、H为曲线C上两点,若四边形EFGH对角线相互垂直,求SEFGH的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点O,过点,M(4,0)的直线l与抛物线C2分别相交于A,B两点.
(1)求证:以AB为直径的圆过原点O;
(2)若坐标原点关于直线l的对称点P在抛物线C2上,直线l与椭圆C1相切,求椭圆C1的标准方程.

查看答案和解析>>

同步练习册答案