9£®Èçͼ£¬ÉèPÊÇÔ²x2+y2=6Éϵ͝µã£¬µãDÊÇPÔÚxÖáÉϵÄͶӰ£¬MΪPDÉÏÒ»µã£¬ÇÒ$\overrightarrow{DP}=\sqrt{2}\overrightarrow{DM}$£®
£¨1£©µ±PÔÚÔ²ÉÏÔ˶¯Ê±£¬ÇóµãMµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©ÈôµãQ£¨1£¬1£©Ç¡ÎªÖ±ÏßlÓëÇúÏßCÏཻÏÒµÄÖе㣬ÊÔÈ·¶¨Ö±ÏßlµÄ·½³Ì£»
£¨3£©Ö±Ïß$x+y-\sqrt{3}=0$ÓëÇúÏßCÏཻÓÚE¡¢GÁ½µã£¬F¡¢HΪÇúÏßCÉÏÁ½µã£¬ÈôËıßÐÎEFGH¶Ô½ÇÏßÏ໥´¹Ö±£¬ÇóSEFGHµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÉèMµÄ×ø±êΪ£¨x£¬y£©£¬ÓÉÒÑÖªµÃµãPµÄ×ø±êÊÇ£¨x£¬$\sqrt{2}$y£©£¬ÓÉ´ËÄÜÇóµãMµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©Ö±ÏßlÓëÇúÏßCÏཻÏÒΪABA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬´úÈëÁ½Ê½Ïà¼õ£¬ÔÙÀûÓÃÖеã×ø±ê¹«Ê½¡¢Ð±ÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
£¨3£©Çó³ö|FH|µÄ×î´óÖµ£¬¼´¿ÉÇó³öSEFGHµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©ÓÉ$\overrightarrow{DP}=\sqrt{2}\overrightarrow{DM}$ÖªµãMΪÏß¶ÎPDµÄÖе㣬
ÉèµãMµÄ×ø±êÊÇ£¨x£¬y£©£¬ÔòµãPµÄ×ø±êÊÇ£¨x£¬$\sqrt{2}$y£©£¬
¡ßµãPÔÚÔ²x2+y2=6ÉÏ£¬
¡àx2+2y2=6£®¡­£¨3·Ö£©
¡àÇúÏßCµÄ·½³ÌΪ$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{3}$=1£»
£¨2£©Ö±ÏßlÓëÇúÏßCÏཻÏÒΪAB£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
´úÈëÍÖÔ²·½³Ì£¬Á½Ê½Ïà¼õ¿ÉµÃ£º£¨x1+x2£©£¨x1-x2£©+2£¨y1+y2£©£¨y1-y2£©=0£¬
¡ßÏÒABÖеãΪ£¨1£¬1£©£¬
¡àkAB=-$\frac{1}{2}$£®
¡àÖ±ÏßlµÄ·½³ÌΪy-1=-$\frac{1}{2}$£¨x-1£©£¬½âµÃx+2y-3=0£®
£¨3£©ÉèFHµÄ·½³ÌΪy=x+b£¬´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ3x2+4bx+2b2-6=0£¬
¡à|FH|=$\sqrt{2}•\sqrt{£¨-\frac{4b}{3}£©^{2}-4•\frac{2{b}^{2}-6}{3}}$=$\sqrt{2}$•$\sqrt{-\frac{8}{9}{b}^{2}+8}$£¬
¡àb=0£¬|FH|µÄ×î´óֵΪ4£¬
Ö±Ïß$x+y-\sqrt{3}=0$ÓëÇúÏßCÁªÁ¢£¬¿ÉµÃ$3{x}^{2}-4\sqrt{3}x=0$£¬
¡à|EG|=$\sqrt{2}•\frac{4\sqrt{3}}{3}$=$\frac{4\sqrt{6}}{3}$£¬
¡àSEFGHµÄ×î´óֵΪ$\frac{8\sqrt{6}}{3}$£®

µãÆÀ ±¾Ì⿼²é¹ì¼£·½³Ì£¬¿¼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢¡°µã²î·¨¡±¡¢Öеã×ø±ê¹«Ê½¡¢Ð±ÂʼÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÅ×ÎïÏßy2=2px£¨p£¾0£©½ØÖ±Ïßy=2x-4ËùµÃÏÒ³¤$|{AB}|=3\sqrt{5}$£¬
£¨ I£©ÇóÅ×ÎïÏߵķ½³Ì£»
£¨ II£©ÉèFÊÇÅ×ÎïÏߵĽ¹µã£¬Çó¡÷ABFµÄÍâ½ÓÔ²Éϵĵ㵽ֱÏßABµÄ×î´ó¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{-x}£¬x£¼1}\\{lo{g}_{2}x£¬x¡Ý1}\end{array}\right.$£¬Èôº¯Êýy=f£¨x£©-kÓÐÇÒÖ»ÓÐÁ½¸öÁãµã£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ£¨$\frac{1}{2}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èôº¯Êýy=f£¨x£©µÄ×îСÕýÖÜÆÚÊǦУ¬ÇÒͼÏó¹ØÓÚµã$£¨{\frac{¦Ð}{3}£¬0}£©$¶Ô³Æ£¬Ôòf£¨x£©µÄ½âÎöʽ¿ÉÒÔ£¨¡¡¡¡£©
A£®$y=sin£¨{\frac{x}{2}+\frac{5¦Ð}{6}}£©$B£®$y=sin£¨{2x-\frac{¦Ð}{6}}£©$C£®y=2sin2x-1D£®$y=cos£¨{2x-\frac{¦Ð}{6}}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªtan¦È=2£¬Ôò$\frac{5sin¦È-cos¦È}{sin¦È+cos¦È}$=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®½«±ß³¤Îª2µÄÕý·½ÐÎABCDÑØ¶Ô½ÇÏßBDÕÛ³ÉÖ±¶þÃæ½ÇA-BD-C£¬ÔòÒìÃæÖ±ÏßABÓëCDËù³ÉµÄ½Ç60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬PΪCÉÏÒìÓÚÔ­µãµÄÈÎÒâÒ»µã£¬¹ýµãPµÄÖ±Ïßl½»CÓÚÁíÒ»µãQ£¬½»xÖáµÄÕý°ëÖáÓÚµãS£¬ÇÒÓÐ|FP|=|FS|£®µ±µãPµÄºá×ø±êΪ3ʱ£¬|PF|=|PS|£®
£¨¢ñ£©ÇóCµÄ·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl1¡Îl£¬l1ºÍCÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãE£¬
£¨¢¡£©¡÷OPEµÄÃæ»ýÊÇ·ñ´æÔÚ×îСֵ£¿Èô´æÔÚ£¬Çó³ö×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢¢£©Ö¤Ã÷Ö±ÏßPE¹ý¶¨µã£¬²¢Çó³ö¶¨µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÇúÏßy=$\frac{2}{x}$ÓëÖ±Ïßy=x-1¼°x=4ËùΧ³ÉµÄ·â±ÕͼÐεÄÃæ»ýΪ£¨¡¡¡¡£©
A£®2ln 2B£®2-ln 2C£®4-ln 2D£®4-2ln 2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÈçͼËùʾ£¬ÔÚÆ½ÐÐÁùÃæÌåABCD-A1B1C1D1ÖУ¬µ×ÃæÊDZ߳¤Îª2µÄÕý·½ÐΣ¬²àÀâAA1µÄ³¤Îª2£¬ÇÒ¡ÏA1AB=¡ÏA1AD=120¡ã£¬EΪABµÄÖе㣬FΪCC1µÄÖе㣬ÔòEFµÄ³¤Îª$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸