精英家教网 > 高中数学 > 题目详情
4.已知tanθ=2,则$\frac{5sinθ-cosθ}{sinθ+cosθ}$=3.

分析 把分子分母都除以cosθ,利用同角三角函数间的基本关系即可得到关于tanθ的关系式,把tanθ的值代入即可求出值.

解答 解:∵tanθ=2,
∴$\frac{5sinθ-cosθ}{sinθ+cosθ}$=$\frac{5tanθ-1}{tanθ+1}$=$\frac{5×2-1}{2+1}$=3.
故答案为:3.

点评 此题考查学生灵活运用同角三角函数间的基本关系化简求值,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.函数$f(x)=\frac{{\sqrt{-lnx}}}{{{x^2}-1}}$的定义域为(  )
A.(-∞,1)B.(0,1)C.(0,1]D.(-∞,-1)∪(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线x2=2py (p>0),其焦点F到准线的距离为1.过F作抛物线的两条弦AB和CD,且M,N分别是AB,CD的中点.设直线AB、CD的斜率分别为k1、k2
(1)若AB⊥CD,且k1=1,求△FMN的面积;
(2)若$\frac{1}{k_1}+\frac{1}{k_2}=1$,求证:直线MN过定点,并求此定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在四棱锥P-ABCD中,PA⊥底面ABCD,其中PA=2AB=2AD=2,G为三角形BCD的重心,则PG与底面ABCD所成角的正弦值为(  )
A.$3\sqrt{2}$B.$\frac{3\sqrt{11}}{11}$C.$\frac{{\sqrt{19}}}{19}$D.$\frac{{3\sqrt{19}}}{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,a,b,c分别为角A,B,C的对边,$b=1,c=\sqrt{3},B={30°}$,则a=1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,设P是圆x2+y2=6上的动点,点D是P在x轴上的投影,M为PD上一点,且$\overrightarrow{DP}=\sqrt{2}\overrightarrow{DM}$.
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)若点Q(1,1)恰为直线l与曲线C相交弦的中点,试确定直线l的方程;
(3)直线$x+y-\sqrt{3}=0$与曲线C相交于E、G两点,F、H为曲线C上两点,若四边形EFGH对角线相互垂直,求SEFGH的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x,y满足约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{x-2y-2≤0}\\{x+y-2≤0}\end{array}\right.$,若z=x-ay(a>0)的最大值为4,则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱柱ABC-A1B1C1中,面积为$\frac{9}{2}$的△ACB是等腰直角三角形且∠ACB=90°,C1B⊥面ABC,C1B=3.
(1)若AB的中点为S,证明:CS⊥C1A.
(2)设$T(3-λ,λ,\frac{4λ+3}{2})$,是否存在实数λ,使得直线TB与平面ACC1A1的夹角为$\frac{π}{6}$?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若棱长为a的正方体的表面积等于一个球的表面积,棱长为b的正方体的体积等于该球的体积,则a,b的大小关系是a<b.

查看答案和解析>>

同步练习册答案