精英家教网 > 高中数学 > 题目详情
13.如图,在三棱柱ABC-A1B1C1中,面积为$\frac{9}{2}$的△ACB是等腰直角三角形且∠ACB=90°,C1B⊥面ABC,C1B=3.
(1)若AB的中点为S,证明:CS⊥C1A.
(2)设$T(3-λ,λ,\frac{4λ+3}{2})$,是否存在实数λ,使得直线TB与平面ACC1A1的夹角为$\frac{π}{6}$?若存在,求出λ的值;若不存在,请说明理由.

分析 (1)推导出AC⊥BC,以B为原点,BC为x轴,在平面ABC中过B作AC的平行线为y轴,BC1为z轴,建立 空间直角坐标系,利用向量法能证明CS⊥C1A.
(2)求出$\overrightarrow{BT}$=$(3-λ,λ,\frac{4λ+3}{2})$,平面ACC1A1的法向量$\overrightarrow{n}$=(1,0,1),利用向量法推导出不存在实数λ,使得直线TB与平面ACC1A1的夹角为$\frac{π}{6}$.

解答 证明:(1)∵面积为$\frac{9}{2}$的△ACB是等腰直角三角形且∠ACB=90°,
∴AC⊥BC,AC=BC=3,AB=3$\sqrt{2}$,
∵C1B⊥面ABC,
∴以B为原点,BC为x轴,在平面ABC中过B作AC的平行线为y轴,
BC1为z轴,建立 空间直角坐标系,
∵C1B=3,∴C(3,0,0),B(0,0,0),A(3,-3,0),S($\frac{3}{2},-\frac{3}{2}$,0),C1(0,0,3),
∴$\overrightarrow{CS}$=(-$\frac{3}{2}$,-$\frac{3}{2}$,0),$\overrightarrow{{C}_{1}A}$=(3,-3,-3),
∴$\overrightarrow{CS}$•$\overrightarrow{{C}_{1}A}$=-$\frac{9}{2}+\frac{9}{2}+0$=0,
∴CS⊥C1A.
解:(2)∵$T(3-λ,λ,\frac{4λ+3}{2})$,∴$\overrightarrow{BT}$=$(3-λ,λ,\frac{4λ+3}{2})$,
$\overrightarrow{AC}$=(0,3,0),$\overrightarrow{A{C}_{1}}$=(-3,3,3),
设平面ACC1A1的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=3y=0}\\{\overrightarrow{n}•\overrightarrow{A{C}_{1}}=-3x+3y+3z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,1),
∵直线TB与平面ACC1A1的夹角为$\frac{π}{6}$,
∴sin$\frac{π}{6}$=|cos<$\overrightarrow{TB},\overrightarrow{n}$>|=$\frac{|\overrightarrow{TB}•\overrightarrow{n}|}{|\overrightarrow{TB}|•|\overrightarrow{n}|}$=$\frac{|3-λ+\frac{4λ+3}{2}|}{\sqrt{(3-λ)^{2}+{λ}^{2}+(\frac{4λ+3}{2})^{2}}•\sqrt{2}}$=$\frac{1}{2}$,
解得λ=$\frac{18±3\sqrt{322}}{22}$,不舍题意,
故不存在实数λ,使得直线TB与平面ACC1A1的夹角为$\frac{π}{6}$.

点评 本题考查线线垂直的证明,考查满足条件的实数值是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在△ABC中,若$a=\sqrt{6}$,b=4,B=2A,则sinA的值为(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{6}}}{6}$C.$\frac{{2\sqrt{3}}}{6}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知tanθ=2,则$\frac{5sinθ-cosθ}{sinθ+cosθ}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C:y2=2px(p>0)的焦点为F,P为C上异于原点的任意一点,过点P的直线l交C于另一点Q,交x轴的正半轴于点S,且有|FP|=|FS|.当点P的横坐标为3时,|PF|=|PS|.
(Ⅰ)求C的方程;
(Ⅱ)若直线l1∥l,l1和C有且只有一个公共点E,
(ⅰ)△OPE的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由;
(ⅱ)证明直线PE过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2x+2-x
(Ⅰ)试写出这个函数的性质(不少于3条,不必说明理由),并作出图象;
(Ⅱ)设函数g(x)=4x+4-x-af(x),求这个函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线y=$\frac{2}{x}$与直线y=x-1及x=4所围成的封闭图形的面积为(  )
A.2ln 2B.2-ln 2C.4-ln 2D.4-2ln 2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知以点A(m,$\frac{2}{m}$)(m∈R且m>0)为圆心的圆与x轴相交于O,B两点,与y轴相交于O,C两点,其中O为坐标原点.
(1)当m=2时,求圆A的标准方程;
(2)当m变化时,△OBC的面积是否为定值?若是,请求出该定值;若不是,请说明理由;
(3)设直线l:2x+y-4=0与圆A相交于P,Q两点,且|OP|=|OQ|,求|PQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ADC=45°,AD=AC=2,O为AC的中点,PO⊥平面ABCD且PO=6,M为BD的中点.
(1)证明:AD⊥平面PAC;
(2)求直线AM与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$|\overrightarrow a|=3,|\overrightarrow{b|}=4$,且$|\overrightarrow a|$与$|\overrightarrow{b|}$为不共线的平面向量.
(1)若$(\overrightarrow a+k\overrightarrow b)⊥(\overrightarrow a-k\overrightarrow b)$,求k的值;
(2)若$(k\overrightarrow a-4\overrightarrow b)$∥$(\overrightarrow a-k\overrightarrow b)$,求k的值.

查看答案和解析>>

同步练习册答案