精英家教网 > 高中数学 > 题目详情
18.曲线y=$\frac{2}{x}$与直线y=x-1及x=4所围成的封闭图形的面积为(  )
A.2ln 2B.2-ln 2C.4-ln 2D.4-2ln 2

分析 先联立两个曲线的方程,求出交点,以确定积分公式中x的取值范围,最后根据定积分的几何意义表示出区域的面积,根据定积分公式解之即可.先联立两个曲线的方程,求出交点,以确定积分公式中x的取值范围,最后根据定积分的几何意义表示出区域的面积,根据定积分公式解之即可.

解答 解:由曲线y=$\frac{2}{x}$与直线y=x-1联立,解得,x=-1,x=2,
故所求图形的面积为S=${∫}_{2}^{4}$(x-1-$\frac{2}{x}$)dx=($\frac{1}{2}$x2-x-2lnx)|${\;}_{2}^{4}$=4-2ln2.
故选:C.

点评 本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知锐角△ABC的面积为2$\sqrt{3}$,AB=2,BC=4,则三角形的外接圆半径为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,设P是圆x2+y2=6上的动点,点D是P在x轴上的投影,M为PD上一点,且$\overrightarrow{DP}=\sqrt{2}\overrightarrow{DM}$.
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)若点Q(1,1)恰为直线l与曲线C相交弦的中点,试确定直线l的方程;
(3)直线$x+y-\sqrt{3}=0$与曲线C相交于E、G两点,F、H为曲线C上两点,若四边形EFGH对角线相互垂直,求SEFGH的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设有直线m,n和平面α,β,下列四个命题中,正确的是(  )
A.若m∥α,n∥α,则m∥nB.若m?α,n?α,m∥β,l∥β,则α∥β
C.若α⊥β,m?α,则m⊥βD.若α⊥β,m⊥β,m?α,则m∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱柱ABC-A1B1C1中,面积为$\frac{9}{2}$的△ACB是等腰直角三角形且∠ACB=90°,C1B⊥面ABC,C1B=3.
(1)若AB的中点为S,证明:CS⊥C1A.
(2)设$T(3-λ,λ,\frac{4λ+3}{2})$,是否存在实数λ,使得直线TB与平面ACC1A1的夹角为$\frac{π}{6}$?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.圆锥过轴的截面是(  )
A.B.等腰三角形C.矩形D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点O,过点,M(4,0)的直线l与抛物线C2分别相交于A,B两点.
(1)求证:以AB为直径的圆过原点O;
(2)若坐标原点关于直线l的对称点P在抛物线C2上,直线l与椭圆C1相切,求椭圆C1的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=cosx({\sqrt{3}sinx+cosx})$,x∈R.
(1)求函数f(x)的最大值;
(2)若$f({\frac{θ}{2}})=\frac{3}{4}$,θ∈R,求$f({θ+\frac{π}{3}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8..如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求证:直线BD1∥平面PAC
(2)求证:平面PAC⊥平面BDD1B1

查看答案和解析>>

同步练习册答案