精英家教网 > 高中数学 > 题目详情
18.已知P为椭圆$\frac{{x}^{2}}{4}$+y2=1上任意一点,F1,F2为其左、右焦点,则$\frac{1}{|P{F}_{1}|}$+$\frac{1}{|P{F}_{2}|}$的最小值等于1.

分析 借助于椭圆的定义得|PF1|+|PF2|=2a,设|PF1|=m,|PF2|=n,利用基本不等式的性质即可$\frac{1}{|P{F}_{1}|}$+$\frac{1}{|P{F}_{2}|}$的最小值.

解答 解:由题意:椭圆$\frac{{x}^{2}}{4}$+y2=1,可得a=2,P时椭圆上任意一点,F1,F2是椭圆的两个焦点.
由椭圆的定义得|PF1|+|PF2|=2a,设|PF1|=m,|PF2|=n,即m+n=2a=4,
∴m+n≥2$\sqrt{mn}$,当且仅当m=n时取等号.
所以:mn≤4,
则$\frac{1}{|P{F}_{1}|}$+$\frac{1}{|P{F}_{2}|}$=$\frac{1}{m}+\frac{1}{n}$=$\frac{m+n}{mn}$=$\frac{4}{mn}$≥1.
当且仅当m=n时取等号.
所以则$\frac{1}{|P{F}_{1}|}$+$\frac{1}{|P{F}_{2}|}$的最小值1.
故答案为:1.

点评 本题考查了椭圆的定义与基本不等式的结合的灵活运用能力.属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列四个不等式中,错误的个数是(  )
①50.5<60.5②0.10.3<0.10.4③log23<log25④log32<0.1-0.2
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=cos(2x-$\frac{π}{6}$)(x∈R),下列命题正确的是(  )
A.若f(x1)=f(x2)=0,则x1-x2=kπ(k∈Z)B.f(x)的图象关于点($\frac{π}{12}$,0)对称
C.f(x)的图象关于直线x=$\frac{π}{3}$对称D.f(x)在区间(-$\frac{π}{3}$,$\frac{π}{12}$)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=AC=BC=1,则异面直线A1B与AC所成角的余弦值是(  )
A.-$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知动点P到点M(-1,0)的距离与它到直线x=1的距离相等.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)若直线l:x+y+1=0与动点P的轨迹交于A,B两点,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆 M与圆N:(x-$\frac{5}{3}$)2+(y+$\frac{5}{3}$)2=r2关于直线y=x对称,且点D(-$\frac{5}{3}$,$\frac{1}{3}$)在圆M上.
(1)判断圆M与圆N的公切线的条数;
(2)设P为圆M上任意一点,A(-1,$\frac{5}{3}$),B(1,$\frac{5}{3}$),P,A,B三点不共线,PG为∠APB的平分线,且交AB于G,求证:△PBG与△APG的面积之比为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设f(x)=$\left\{\begin{array}{l}{{2}^{-x},x≤1}\\{lo{g}_{3}\frac{x}{3}lo{g}_{3}\frac{x}{9},x>1}\end{array}\right.$.
(1)求f(log2$\frac{3}{2}$)的值;
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点M(x,y)在运动过程中,总满足关系$\sqrt{{x^2}+{{(y-3)}^2}}+\sqrt{{x^2}+{{(y+3)}^2}}=10$,则M的轨迹是(  )
A.线段B.双曲线C.椭圆D.两条射线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设△ABC三个内角A,B,C所对的边分别为a,b,c,若a2sinC=4sinA,(ca+cb)(sinA-sinB)=sinC(2$\sqrt{7}$-c2),则△ABC的面积为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案