精英家教网 > 高中数学 > 题目详情
设数列{an}满足an+1=an2-nan+1(n∈N*
(1)当a1=2时,求a2、a3、a4,并由此猜想出an的一个通项公式;
(2)当a1≥2时,证明:对?n∈N*,有an≥n+1.
考点:数学归纳法,数列递推式
专题:综合题,点列、递归数列与数学归纳法
分析:(1)由a1=2,an+1=an2-nan+1,把n=1,2,3分别代入可求a2,a3,a4的值,归纳数列中每一项的值与序号的关系,我们可以归纳推理出an的一个通项公式.
(2)an≥n+1的证明可以使用数学归纳法,先证明n=1时不等式成立,再假设n=k时不等式成立,进而论证n=k+1时,不等式依然成立,最终得到不等式an≥n+1恒成立.
解答: 解:(1)由a1=2,得a2=a12-a1+1=3
由a2=3,得a3=a22-2a2+1=4
由a3=4,得a4=a32-3a3+1=5
故猜想an=n+1;
(2)用数学归纳法证明:
①当n=1时,a1≥2=1+1,不等式成立.
②假设当n=k时不等式成立,即ak≥k+1,
那么ak+1=ak(ak-k)+1≥(k+1)(k+1-k)+1=k+2.
也就是说,当n=k+1时,ak+1≥(k+1)+1
据①和②,对于所有n≥1,有an≥n+1.
点评:本题主要考查了由数列的递推公式求解数列的通项,解题的关键是由前几项归纳出数列项的规律.归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).但归纳推理的结论不一定正确,我们要利用数学归纳法等方法对归纳的结论进行进一步的论证
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x+bx2+alnx,又y=f(x)的图象过P(1,1)点,且在P处切线的斜率为2.
(1)求a,b的值
(2)证明f(x)≤2x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,
(1)求函数g(x)=f(x+1)-x的最大值;
(2)若不等式f(x)≤ax≤x2+1对?x>0恒成立,求实数a的取值范围;
(3)0<a<b,求证f(b)-f(a)>
2a(b-a)
a2+b2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上只有f(1)=f(3)=0.
(1)试判断函数y=f(x)的奇偶性;
(2)试求方程f(x)=0在闭区间[-2014,2014]上根的个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆P与圆F1:(x+3)2+y2=81相切,且与圆F2:(x-3)2+y2=1相内切,记圆心P的轨迹为曲线C;设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点.
(Ⅰ)求曲线C的方程;
(Ⅱ)试探究|MN|和|OQ|2的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由;
(Ⅲ)记△QF2M的面积为S1,△OF2N的面积为S2,令S=S1+S2,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列定积分的值:(1)
π
4
0
cos2
x
2
dx

                  (2)
2
-1
|x2-x|dx

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:sinα=2cosα,求下列各式的值
(1)
sinα-4cosα
5sinα+2cosα

(2)sin2θ+sinθcosθ-2cos2θ

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=4,直线l:y=x+b,若圆O上恰有三个点到直线l的距离等于1,则正数b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x-
1
x
)=x2+(
1
x2
),则f(x+
1
x
)=
 

查看答案和解析>>

同步练习册答案