精英家教网 > 高中数学 > 题目详情
已知f(x)=x+bx2+alnx,又y=f(x)的图象过P(1,1)点,且在P处切线的斜率为2.
(1)求a,b的值
(2)证明f(x)≤2x-1.
考点:利用导数研究曲线上某点切线方程
专题:综合题,导数的概念及应用
分析:(1)求导数,利用y=f(x)的图象过P(1,1)点,且在P处切线的斜率为2,建立方程,即可求a,b的值
(2)设g(x)=f(x)-(2x-1)=lnx-x+1,确定g(x)在x=1处取得最大值g(1)=0,即可证明结论.
解答: (1)解:因为f(x)=x+bx2+alnx,
所以f′(x)=1+2bx+
a
x

因为y=f(x)的图象过P(1,1)点,且在P处切线的斜率为2,
所以1+b=1,1+2b+a=2,
所以a=1,b=0;
(2)证明:设g(x)=f(x)-(2x-1)=lnx-x+1,
所以g′(x)=
1-x
x

所以g(x)在x=1处取得最大值g(1)=0,
所以g(x)≤0,
所以f(x)≤2x-1.
点评:本题考查了导数的几何意义,在切点处的导数值是切线斜率,考查不等式的证明,构造函数是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某学校举办趣味运动会,甲、乙两名同学报名参加比赛,每人投篮2次,每次等可能选择投2分球或3分球.据赛前训练统计:甲同学投2分球命中率为
3
5
,投3分球命中率为
3
10
;乙同学投2分球命中率为
1
2
,投3分球命中率为
2
5
,且每次投篮命中与否相互之间没有影响.
(1)若甲同学两次都选择投3分球,求其总得分ξ的分布列和数学期望;
(2)记“甲、乙两人总得分之和不小于10分”为事件A,记“甲同学总得分大于乙同学总得分”为事件B,求P(AB).

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,点P是圆x2+y2=4上一动点,PD⊥x轴于点D,记满足
OM
=
1
2
OP
+
OD
)的动点M的轨迹为Γ.
(Ⅰ)求轨迹Γ的方程;
(Ⅱ)已知直线l:y=kx+m与轨迹F交于不同两点A,B,点G是线段AB中点,射线OG交轨迹F于点Q,且
OQ
OG
,λ∈R.
①证明:λ2m2=4k2+1;
②求△AOB的面积S(λ)的解析式,并计算S(λ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程ax2+4x+b=0(a<0)的两实根为m,n,方程ax2+3x+b=0的两实根为p,q.
(1)若a,b均为负整数,且|p-q|=1,求a,b的值;
(2)若p<1<q<2,m<n,求证:-2<m<1<n.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
|x+1|+|x-2|-a

(1)当a=5时,求f(x)的定义域;
(2)若f(x)定义域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知xi>0(i=1,2,3,…,n),我们知道有(x1+x2)(
1
x1
+
1
x2
)≥4成立.
(Ⅰ)请证明(x1+x2+x3)(
1
x1
+
1
x2
+
1
x3
)≥9;
(Ⅱ)同理我们也可以证明出(x1+x2+x3+x4)(
1
x1
+
1
x2
+
1
x3
+
1
x4
)≥16
由上述几个不等式,请你猜测与x1+x2+…+xn
1
x1
+
1
x2
+…+
1
xn
(n≥2,n∈N*)有关的不等式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

分解因式:x2+3xy+2y2+4x+5y+3.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥E-ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=2,F为线段DE的中点.
(Ⅰ)求证:BE∥平面ACF;
(Ⅱ)求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足an+1=an2-nan+1(n∈N*
(1)当a1=2时,求a2、a3、a4,并由此猜想出an的一个通项公式;
(2)当a1≥2时,证明:对?n∈N*,有an≥n+1.

查看答案和解析>>

同步练习册答案