精英家教网 > 高中数学 > 题目详情
3.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.6826.若μ=4,σ=1,则P(5<X<6)=(  )
A.0.1359B.0.1358C.0.2718D.0.2716

分析 根据变量符合正态分布,和所给的μ和σ的值,根据3σ原则,得到P(2<X≤6)=0.9544,P(3<X≤5)=0.6826,两个式子相减,根据对称性得到结果.

解答 解:∵随机变量X服从正态分布N(μ,σ2),P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-σ<X≤μ+σ)=0.6826,μ=4,σ=1,
∴P(2<X≤6)=0.9544,P(3<X≤5)=0.6826,
∴P(2<X≤6-P(3<X≤5)=0.9544-0.6826=0.2718,
∴P(5<X<6)=$\frac{1}{2}$×0.2718=0.1359
故选:A.

点评 本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x-alnx+$\frac{1-a}{x}$.
(Ⅰ)若a>1,求函数f(x)的单调区间;
(Ⅱ)若a>3,函数g(x)=a2x2+3,若存在x1,x2∈[$\frac{1}{2}$,2],使得|f(x1)-g(x2)|<9成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,$AC=\sqrt{2}$,F为AD的中点.
(Ⅰ)求证:EF∥平面ABC;
(Ⅱ)求证:AC⊥平面BCDE;
(Ⅲ)求直线AE与平面ABC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.曲线f(x)=x2+x在(1,f(1))处的切线方程为(  )
A.2x-y-1=0B.2x-y=0C.3x-y+1=0D.3x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.f(x)=Asin(ωx+φ)(A,ω>0)部分图象如图,则函数表达式为f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f′(x)是定义在R上的函数f(x)的导函数,且f(x)+f′(x)>0,则a=2f(ln2),b=ef(1),c=f(0)的大小关系为(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.tan330°的值为(  )
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等差数列{an}的公差为2,若a1+a3+a5=3,则a4+a6+a8=(  )
A.30B.21C.18D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=1+cos2x+$\sqrt{3}$sin2x
(1)若函数f(x)=1-$\sqrt{3}$,且x∈[-$\frac{π}{3}$,$\frac{π}{3}$],求x;
(2)求函数y=f(x)的单调增区间,并在给出的坐标系中画出y=f(x)在区间[0,π]上的图象.

查看答案和解析>>

同步练习册答案