精英家教网 > 高中数学 > 题目详情
11.曲线f(x)=x2+x在(1,f(1))处的切线方程为(  )
A.2x-y-1=0B.2x-y=0C.3x-y+1=0D.3x-y-1=0

分析 欲求曲线y=x2+x在点(1,2)处的切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而可以得出结论.

解答 解:∵y=x2+x,
∴f′(x)=2x+1,
故当x=1时,f′(1)=3得切线的斜率为3,所以k=3;
∴曲线在点(1,2)处的切线方程为:y-2=3(x-1),即3x-y-1=0,
故选:D.

点评 本题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-2alnx(a∈R且a≠0).
(1)当a=1时,求函数y=f(x)的极值;
(2)求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)=xlnx.
(1)求f′(x);
(2)设0<a<b,求常数c,使得$\frac{1}{b-a}\int_a^b{|lnx-c|dx}$取得最小值;
(3)记(2)中的最小值为Ma,b,证明Ma,b<ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2.
(Ⅰ)若M是棱PB上一点,且BM=2PM,求证:PD∥平面MAC;
(Ⅱ) 若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求证:PA⊥平面ABCD;
(Ⅲ)在(Ⅱ)的条件下,求PC与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果双曲线$\frac{x^2}{a^2}-\frac{y^2}{{{b^{\;}}}}$=1的一条渐近线方程为y=$\frac{2}{3}$x,那么它的离心率为(  )
A.$\frac{19}{3}$B.$\frac{16}{3}$C.$\frac{{\sqrt{13}}}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.棱长为1的正四面体ABCD中,E为棱AB上一点(不含A,B两点),点E到平面ACD和平面BCD的距离分别为a,b,则$\frac{(ab+1)(a+b)}{ab}$的最小值为(  )
A.2B.$2\sqrt{3}$C.$2\sqrt{6}$D.$\frac{{7\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.6826.若μ=4,σ=1,则P(5<X<6)=(  )
A.0.1359B.0.1358C.0.2718D.0.2716

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知角α的终边落在射线5x+12y=0,(x≤0)上,则cosα+$\frac{1}{tanα}$-$\frac{1}{sinα}$的值为-$\frac{77}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数y=sin2x-4sinx-3
求:(1)函数的最大值,最小值
(2)求取得最大值,最小值时的x的取值集合.

查看答案和解析>>

同步练习册答案