| A. | 2 | B. | $2\sqrt{3}$ | C. | $2\sqrt{6}$ | D. | $\frac{{7\sqrt{6}}}{3}$ |
分析 连结CE,DE,O为△BCD的中心,求出OA,利用体积关系式,求解以及基本不等式求解即可.
解答
解:连结CE,DE,由正四面体棱长为1,如图设ABCD是棱长为1的正四面体,
作AO⊥平面BCD于O,则O为△BCD的中心
则BO=$\frac{2}{3}$×$\frac{\sqrt{3}}{2}$×1=$\frac{\sqrt{3}}{3}$,
∴正四面体的高为AO=$\sqrt{{1}^{2}-(\frac{\sqrt{3}}{3})^{2}}$=$\frac{\sqrt{6}}{3}$,即OA=$\frac{\sqrt{6}}{3}$,
由于VA-BCD=VE-BCD+VE-ACD,有$\frac{\sqrt{6}}{3}$=a+b,由a+b$≥2\sqrt{ab}$,
可得$\frac{1}{ab}$≥$\frac{4}{(a+b)^{2}}$=6,
所以$\frac{(ab+1)(a+b)}{ab}$=$\frac{\sqrt{6}}{3}(1+\frac{1}{ab})$$≥\frac{7\sqrt{6}}{3}$.
故选::D.
点评 本题考查几何体的体积以及点到平面的距离的求法,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | [0,4) | B. | (0,1) | C. | (0,4) | D. | (-4,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x-y-1=0 | B. | 2x-y=0 | C. | 3x-y+1=0 | D. | 3x-y-1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com