分析 (I)连结BD交AC于点N,连结MN,利用△CDN∽△ABN可得$\frac{BM}{PM}=\frac{BN}{DN}$=2,于是MN∥PD,故而PD∥平面MAC;
(II)利用面面垂直的性质得出PA⊥AB,PA⊥AD,从而PA⊥平面ABCD;
(III)由(2)可知∠PCA为所求线面角,利用勾股定理得出AC,从而计算出tan∠PCA=$\frac{PA}{AC}$.
解答
证明:(Ⅰ)连结BD交AC于点N,连结MN
∵AB∥CD,
∴△CDN∽△ABN
∴$\frac{BN}{DN}=\frac{AB}{CD}=2$.
∵BM=2PM,
∴$\frac{BM}{PM}=\frac{BN}{DN}$=2.
∴MN∥PD.
又MN?平面MAC,PD?平面MAC,
∴PD∥平面MAC.
(Ⅱ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥AD,AD?平面ABCD,
∴AD⊥平面PAB.∵PA?平面PAB,
∴AD⊥PA.
同理可证AB⊥PA.
又AB?平面ABCD,AD?平面ABCD,AB∩AD=A,
∴PA⊥平面ABCD.
(Ⅲ)解:由(Ⅱ)知,PA⊥平面ABCD.
∴∠PCA为PC与平面ABCD所成的角.
∵PA=AD=2,CD=1,
∴AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=$\sqrt{5}$,
∴tan∠PCA=$\frac{PA}{AC}=\frac{2\sqrt{5}}{5}$.
∴PC与平面ABCD所成角的正切值为$\frac{2\sqrt{5}}{5}$.
点评 本题考查了线面平行,线面垂直的判定,线面角的计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x-y-1=0 | B. | 2x-y=0 | C. | 3x-y+1=0 | D. | 3x-y-1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com