精英家教网 > 高中数学 > 题目详情
19.如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2.
(Ⅰ)若M是棱PB上一点,且BM=2PM,求证:PD∥平面MAC;
(Ⅱ) 若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求证:PA⊥平面ABCD;
(Ⅲ)在(Ⅱ)的条件下,求PC与平面ABCD所成角的正切值.

分析 (I)连结BD交AC于点N,连结MN,利用△CDN∽△ABN可得$\frac{BM}{PM}=\frac{BN}{DN}$=2,于是MN∥PD,故而PD∥平面MAC;
(II)利用面面垂直的性质得出PA⊥AB,PA⊥AD,从而PA⊥平面ABCD;
(III)由(2)可知∠PCA为所求线面角,利用勾股定理得出AC,从而计算出tan∠PCA=$\frac{PA}{AC}$.

解答 证明:(Ⅰ)连结BD交AC于点N,连结MN
∵AB∥CD,
∴△CDN∽△ABN
∴$\frac{BN}{DN}=\frac{AB}{CD}=2$. 
∵BM=2PM,
∴$\frac{BM}{PM}=\frac{BN}{DN}$=2.
∴MN∥PD.
又MN?平面MAC,PD?平面MAC,
∴PD∥平面MAC.  
(Ⅱ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥AD,AD?平面ABCD,
∴AD⊥平面PAB.∵PA?平面PAB,
∴AD⊥PA. 
同理可证AB⊥PA.
又AB?平面ABCD,AD?平面ABCD,AB∩AD=A,
∴PA⊥平面ABCD.
(Ⅲ)解:由(Ⅱ)知,PA⊥平面ABCD.
∴∠PCA为PC与平面ABCD所成的角. 
∵PA=AD=2,CD=1,
∴AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=$\sqrt{5}$,
∴tan∠PCA=$\frac{PA}{AC}=\frac{2\sqrt{5}}{5}$.  
∴PC与平面ABCD所成角的正切值为$\frac{2\sqrt{5}}{5}$.

点评 本题考查了线面平行,线面垂直的判定,线面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设等比数列{an}的前n项和为Sn,已知a1=2,S3=14,若an>0,则公比q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.
(1)求椭圆M的方程;
(2)直线l与椭圆M交于A,B两点,且线段AB的垂直平分线经过点(0,$\frac{1}{2}$),求△AOB(O为坐标原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.二次函数f(x)=-x2+bx+c的图象和x轴交于A,B两点,若以AB为直径的圆与f(x)的图象切于顶点P点,若P点的横坐标是x0,则f(x0)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,$AC=\sqrt{2}$,F为AD的中点.
(Ⅰ)求证:EF∥平面ABC;
(Ⅱ)求证:AC⊥平面BCDE;
(Ⅲ)求直线AE与平面ABC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=x2-2bx+6在(2,8)内是增函数,则(  )
A.b≤2B.b<2C.b≥2D.b>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.曲线f(x)=x2+x在(1,f(1))处的切线方程为(  )
A.2x-y-1=0B.2x-y=0C.3x-y+1=0D.3x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f′(x)是定义在R上的函数f(x)的导函数,且f(x)+f′(x)>0,则a=2f(ln2),b=ef(1),c=f(0)的大小关系为(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知角α的终边经过点p0(-3,-4),则cos($\frac{π}{2}$+α)的值为$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案