精英家教网 > 高中数学 > 题目详情
9.设直线l1,l2的斜率和倾斜角分别为k1,k2和θ1,θ2,则“k1>k2”是“θ1>θ2”的(  )
A.必要不充分条件B.充分不必要条件
C.充分必要条件D.既不充分也不必要条件

分析 根据直线倾斜角和斜率之间的关系,利用充分条件和必要条件的定义进行判断即可

解答 解:∵直线l1,l2的斜率和倾斜角分别为k1,k2和θ1,θ2
当倾斜角均为锐角时,和均为钝角时,若“k1>k2”则“θ1>θ2”,若“θ1>θ2”则“k1>k2”,
当倾斜角一个为锐角一个为钝角时,若“k1>k2”则“θ1与θ2”的大小不能确定,若“θ1>θ2”则“k1与k2”的大小也不能确定,
故则“k1>k2”是“θ1>θ2”的既不充分也不必要条件,
故选:D

点评 本题主要考查充分条件和必要条件的判断,利用倾斜角和斜率之间的关系是解决本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若实数x,y满足4x-y2=0,则$\frac{y}{x+1}$的取值范围为-1≤t≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=rcosα\\ y=rsinα\end{array}\right.$(α为参数,r为常数,r>0).以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$\sqrt{2}ρcos(θ+\frac{π}{4})+2=0$.若直线l与曲线C交于A,B两点,且$AB=2\sqrt{2}$,求r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=f(x)的图象经过坐标原点,且f(x)=x2-x+b,数列{an}的前n项和Sn=f(n)(n∈N*).
(1)求数列{an}的通项公式;
(2)设Pn=a1+a4+a7+…+a3n-2,Qn=a10+a12+a14+…+a2n+8,其中n∈N*,试比较Pn与Qn的大小,并证明你的结论;
(3)若数列{bn}满足an+log3n=log3bn,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设数列{an}的前n项和是Sn,数列{Sn}的前n项乘积是Tn,若Sn+Tn=1,若数列{an}中的项a${\;}_{{n}_{0}}$最接近$\frac{1}{2015}$,则n0=44.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设P、Q分别是圆(x-1)2+y2=$\frac{1}{4}$和椭圆$\frac{{x}^{2}}{4}$+y2=1上的动点,则P、Q两点间的最小距离是$\frac{\sqrt{6}}{3}-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|x2≥4},N={-3,0,1,3,4},则M∩N=(  )
A.{-3,0,1,3,4}B.{-3,3,4}C.{1,3,4}D.{x|x≥±2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x≤2}\\{y≥1}\end{array}\right.$,则z=x-2y的最小值是(  )
A.-6B.-3C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{3}{5}t}\\{y=1+\frac{4}{5}t}\end{array}\right.$(t为参数).以直角坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)若P(x,y)是直线l与曲线C的内部的公共点,求x-y的取值范围.

查看答案和解析>>

同步练习册答案