精英家教网 > 高中数学 > 题目详情
已知|
a
|=2,|
b
|=4,
a
b
的夹角为45°,则
a
+
b
b
方向上的投影为
 
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:运用向量的数量积的定义和性质,即向量的平方即为模的平方,再由向量的投影的概念即可求得所求值.
解答: 解:由于|
a
|=2,|
b
|=4,
a
b
的夹角为45°,
a
b
=2×4×cos45°=4
2

a
+
b
b
=
a
b
+
b
2
=4
2
+16,
a
+
b
b
方向上的投影为
(
a
+
b
)•
b
|
b
|
=
4
2
+16
4
=4+
2

故答案为:4+
2
点评:本题考查平面向量的数量积的定义和性质,以及投影的定义和求法,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求曲线f(x)=x3-bx2+3x的凹凸区间和拐点.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,an+1=
1
2
an2-an+2.求证:1≤an<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方形ABCD中,AB=2,BC=1,E为CD的中点,F为线段EC (端点除外)上一动点,现将三角形AFD沿AF折起,使平面AFD⊥平面ABC,在平面ABD内过点D作DK⊥AB,K为垂足,设AK=t,则 t 的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,a≠1,设命题p:函数y=loga x在(0,+∞)上单凋递增;命题q:函数y=|x+2a|-|x|对任意x∈R满足-1<y<l.若“p∨q”为真命题,“p∧q”为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(2-i)(1-i)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙C1(x-2)2+(y+3)2=25,过点A(-1,0)的弦中,弦长的最大值为M,最小值为m,则M-m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-
mx2
lnx
g(x)=m-
mx2
emx
,其中m∈R且m≠0.e=2.71828…为自然对数的底数.
(Ⅰ)当m<0时,求函数f(x)的单调区间和极小值;
(Ⅱ)当m>0时,若函数g(x)存在a,b,c三个零点,且a<b<c,试证明:-1<a<0<b<e<c;
(Ⅲ)是否存在负数m,对?x1∈(1,+∞),?x2∈(-∞,0),都有f(x1)>g(x2)成立?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足al=2,an+l=2an2,n∈N*
(Ⅰ)证明:数列{1+log2an}为等比数列;
(Ⅱ)证明:
1
1+log2a1
+
2
1+log2a2
+…+
n
1+log2an
<2.

查看答案和解析>>

同步练习册答案