【题目】如图,三棱柱中,侧棱平面, 为等腰直角三角形, ,且, 分别是的中点.
(1)若是的中点,求证: 平面;
(2)若是线段上的任意一点,求直线与平面所成角正弦的最大值.
【答案】(1)见解析(2) 当时, .
【解析】试题分析:
本题考查线面平行的判定和利用空间向量求直线和平面所成的角.(1)先证和,从而得到平面平面,故可得平面.(2)建立空间直角坐标系,求得平面的一个法向量为.设设,且,求得点M的坐标后可得.利用线面角的公式得到所求线面角的正弦值,根据二次函数的最值求解.
试题解析:
(1)连接, ,
∵分别是的中点,
∴,
∴四边形是平行四边形,
所以.
因为分别是的中点,
所以,
又,
所以平面平面,
又平面,
所以平面.
(2)由题意得两两垂直,建立如图所示的空间直角坐标系,
则, , , ,
∴, .
设平面的法向量为,
由,得,
令,得, ,
所以平面的一个法向量为.
设,且,
所以,得, , ,
所以点,
所以.
设直线与平面所成角为,
则
∴当时, .
所以直线与平面所成角正弦的最大值为.
科目:高中数学 来源: 题型:
【题目】已知函数 (m、n为常数,e = 2.718 28…是自然对数的底数),曲线y = f (x)在点(1,f (1))处的切线方程是.
(Ⅰ)求m、n的值;
(Ⅱ)求f (x)的最大值;
(Ⅲ)设 (其中为f (x)的导函数),证明:对任意x > 0,都有.
(注: )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左、右焦点分别为, ,直线交椭圆于, 两点, 的周长为16, 的周长为12.
(1)求椭圆的标准方程与离心率;
(2)若直线与椭圆交于两点,且是线段的中点,求直线的一般方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ-2cos θ-6sin θ+=0,直线l的参数方程为 (t为参数).
(1)求曲线C的普通方程;
(2)若直线l与曲线C交于A,B两点,点P的坐标为(3,3),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知是直角梯形, , , , , 平面.
(Ⅰ)上是否存在点使平面,若存在,指出的位置并证明,若不存在,请说明理由;(Ⅱ)证明: ;
(Ⅲ)若,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左、右焦点分别为, ,直线交椭圆于, 两点, 的周长为16, 的周长为12.
(1)求椭圆的标准方程与离心率;
(2)若直线与椭圆交于两点,且是线段的中点,求直线的一般方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的前n项和为Sn,且满足Sn=2n+1+2p(n∈N*).
(1)求p的值及数列{an}的通项公式;
(2)若数列{bn}满足=(3+p)anbn,求数列{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2018·日照一模)如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,给出下列结论:
①A、M、O三点共线;②A、M、O、A1不共面;③A、M、C、O共面;④B、B1、O、M共面.
其中正确结论的序号为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com