精英家教网 > 高中数学 > 题目详情
二次函数y=x2-2x+2与y=-x2+ax+b(a>0,b>0)在它们的一个交点处切线互相垂直,则
1
a
+
4
b
的最小值为
 
考点:基本不等式
专题:导数的综合应用,不等式的解法及应用
分析:先对两个二次函数进行求导,然后设交点坐标,根据它们在一个交点处的切线相互垂直可得到 a+b=,再由用基本不等式可求得最小值.
解答: 解:∵y=x2-2x+2,
∴y'=2x-2
∵y=-x2+ax+b,
∴y'=-2x+a
设交点为(x0,y0),
∵它们的一个交点处切线互相垂直,
∴(2x0-2)(-2x0+a)=-1,
2x02-(2+a)x0+2-b=0
4x02-(2a+4)x0+2a-1=0,
4x02-(4+2a)x0+4-2b=0  
整理得 2a-1-4+2b=0,
即a+b=
5
2

2a
5
+
2b
5
=1

1
a
+
4
b
=(
1
a
+
4
b
)(
2a
5
+
2b
5
)=
2
5
+
8
5
+
8a
5b
+
2b
5a
≥2+2
8a
5b
?
2b
5a
=2+2×
4
5
=
18
5

当且仅当时
8a
5b
=
2b
5a
,即b=2a时,等号成立.
1
a
+
4
b
的最小值为
18
5

故答案为:
18
5
点评:本题主要考查基本不等式的应用,利用导数的几何意义是解决本题的关键,一定要注意用基本不等式的条件“一正、二定、三相等”.综合性较强,运算量较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=ax2+bx+c的最大值为2,图象的顶点在直线y=x+1上,并且图象经过点(3,-2).
(1)求二次函数的解析式;
(2)当0≤x≤3时,求二次函数的最大值与最小值,并求此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

公安部最新修订的《机动车驾驶证申领和使用规定》于2013年1月1日起正式实施,新规实施后,获取驾照要经过三个科目的考试,先考科目一(理论一),科目一过关后才能再考科目二(桩考和路考),科目二过关后还要考科目三(理论二).只有三个科目都过关后才能拿到驾驶证.某驾校现有100名新学员,第一批参加考试的20人各科目通过的人数情况如下表:
参考人数 通过科目一人数 通过科目二人数 通过科目三人数
20 12 4 2
请你根据表中的数据:
(Ⅰ)估计该驾校这100名新学员有多少人一次性(不补考)获取驾驶证;
(Ⅱ)第一批参加考试的20人中某一学员已经通过科目一的考试,求他能通过科目二却不能通过科目三的概率;
(Ⅲ)该驾校为调动教官的工作积极性,规定若所教学员每通过一个科目的考试,则学校奖励教官100元.现从这20人中随机抽取1人,记X为学校因为该学员而奖励教官的金额数,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

若点A(-2,-1)在直线mx+ny+1=0上,其中mn>0,则
1
m
+
2
n
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某个几何体的三视图如图(主视图的弧线是半圆),根据图中标出的数据,这个几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
1-x
的图象与y=3sinπx(-1≤x≤3)的图象所有交点横坐标之和为(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an},Sn为其前n项和,若S20=100,且a1+a2+a3=4,则a18+a19+a20=(  )
A、20B、24C、26D、30

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+cosα=
1
4
,sinα•cosα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
(1)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(2)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.

查看答案和解析>>

同步练习册答案