【题目】已知函数![]()
(1)若
,且
在
上单调递增,求实数
的取值范围
(2)是否存在实数
,使得函数
在
上的最小值为
?若存在,求出实数
的值;若不存在,请说明理由.
【答案】(1)
(2)![]()
【解析】试题分析:(1)求导,将函数的单调性转化为导函数非负恒成立进行求解;(2)先假设存在这样的实数
,则
在
时恒成立,求导,通过导函数的符号变换讨论函数的单调性,再合理构造函数进行求解.
试题解析:(1)![]()
由已知
在
时恒成立,即
恒成立
分离参数得
,
因为![]()
所以![]()
所以正实数
的取值范围为:![]()
(2)假设存在这样的实数
,则
在
时恒成立,且可以取到等号
故
,即![]()
从而这样的实数
必须为正实数,当
时,由上面的讨论知
在
上递增,
,此时不合题意,故这样的
必须满足
,此时:
令
得
的增区间为![]()
令
得
的减区间为![]()
故![]()
整理得![]()
即
,设
,
则上式即为
,构造
,则等价于![]()
由于
为增函数,
为减函数,故
为增函数
观察知
,故
等价于
,与之对应的![]()
综上符合条件的实数
是存在的,且![]()
科目:高中数学 来源: 题型:
【题目】已知命题p:x∈(﹣∞,0),2x<3x;命题q:x∈(0,
),tanx>sinx,则下列命题为真命题的是( )
A.p∧q
B.p∨(﹁q)
C.(﹁p)∧q
D.p∧(﹁q)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=3,若a,b∈[﹣1,1],a+b≠0时,有
>0成立.
(1)判断f(x)在[﹣1,1]上的单调性,并证明;
(2)解不等式:f(x+
)<f(
);
(3)若当a∈[﹣1,1]时,f(x)≤m2﹣2am+3对所有的x∈[﹣1,1]恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x 满足
;
(1)若a=1且p∧q为真,求实数x的取值范围;
(2)若q是p的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,点A,B的坐标分别是(0,﹣3),(0,3)直线AM,BM相交于点M,且它们的斜率之积是﹣
.
(1)求点M的轨迹L的方程;
(2)若直线L经过点P(4,1),与轨迹L有且仅有一个公共点,求直线L的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)某中学欲制定一项新的制度,学生会为此进行了问卷调查,所有参与问卷调查的人中,持有“支持”、“不支持”和“既不支持也不反对”的人数如下表所示:
支持 | 既不支持也不反对 | 不支持 | |
高一学生 | 800 | 450 | 200 |
高二学生 | 100 | 150 | 300 |
(Ⅰ)在所有参与问卷调查的人中,用分层抽样的方法抽取
个人,已知从“支持”的人中抽取了45人,求
的值;
(Ⅱ)在持“不支持”态度的人中,用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有1人是高一学生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
=(cosα,sinα)(0≤α<2π),
=(﹣
,
).
(1)若
∥
,求α的值;
(2)若两个向量
+
与
﹣
垂直,求tanα.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com