精英家教网 > 高中数学 > 题目详情
已知f(x)=x2+2x+
4
x
(x>0),求f(x)的最小值.
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:利用导数研究其单调性极值与最值即可得出.
解答: 解:f′(x)=2x+2-
4
x2
=
2(x-1)(x2+2x+2)
x2
,(x>0).令f′(x)=0,解得x=1.
当x>1时,f′(x)>0,函数f(x)单调递增;当0<x<1时,f′(x)<0,函数f(x)单调递减.
∴当x=1时,函数f(x)取得极小值即最小值,f(1)=7.
点评:本题考查了利用导数研究其单调性极值与最值,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

y=ax2+bx+c(a≠0)的图象如图所示,则点M(a,bc)在(  ) 
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a2=5,a8=17,求数列的公差及通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈(0,
π
4
),cos(α-
π
4
)=
4
5
,则cosα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α、β∈(
π
2
,π),且tan(π+α)<tan(
5
2
π-β),求证:α+β<
3
2
π.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为第四象限角,则2a的终边在第
 
象限,
3a的终边在第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,若cosA=
3
5
,cosB=
5
13
,则sinC=
 
,C=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cosxsin(x+
π
6
)+1,x∈R.
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)若x∈[-
π
6
π
3
],求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是正方体的平面展开图,在这个正方体中,正确的命题是(  )
A、BD与CF成60°角
B、BD与EF成60°角
C、AB与CD成60°角
D、AB与EF成60°角

查看答案和解析>>

同步练习册答案