精英家教网 > 高中数学 > 题目详情
y=ax2+bx+c(a≠0)的图象如图所示,则点M(a,bc)在(  ) 
A、第一象限B、第二象限
C、第三象限D、第四象限
考点:二次函数的性质
专题:函数的性质及应用
分析:根据已知中y=ax2+bx+c(a≠0)的图象,分析a,b,c的符号,进而可得M点的位置.
解答: 解:∵y=ax2+bx+c(a≠0)的图象开口方向朝上,
∴a>0,
又由对称轴在y轴右侧,故-
b
2a
>0

∴b<0,
当x=0时,图象与y轴交点在y轴负半轴上,
∴c<0,
故bc>0,
即点M(a,bc)在第一象限,
故选:A.
点评:本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知ln(
e-3x+1
e3x+1
)=2ax,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,5),B(3,9),O为坐标原点,若点C满足
OC
OA
OB
,其中α,β∈R,且α+β=1,则点C的轨迹方程为(  )
A、2x+y-7=0
B、2x-y+3=0
C、x-2y+9=0
D、x+2y-11=0

查看答案和解析>>

科目:高中数学 来源: 题型:

数列前n项和为n3,且前n个偶数项的和为n2(4n+3),则前n个奇数项的和为(  )
A、-3n2(n+1)
B、n2(4n-3)
C、-3n2
D、
1
2
n3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+a-1.
(1)若函数f(x)在区间[-1,1]上具有单调性,求a的取值范围;
(2)若函数f(x)在区间[-1,1]上的最小值为-3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx+c和g(x)=2x+b,若对任意的x∈R,恒有f(x)≥g(x)
(1)证明:c≥1且c≥b
(2)证明:当x≥0时,(x+c)2≥f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

从5名男生,3名女生中选4名代表,至少有1名女生的选法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+3,g(x)=mx+5-2m.
(Ⅰ)若函数F(x)=f(3x),x∈[-1,1],F(x)的最小值为h(a),求h(a)的解析式;
(Ⅱ)若x∈[1,4],当a=2时f(x)的值域为A,g(x)的值域为B,A∪B=B,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+2x+
4
x
(x>0),求f(x)的最小值.

查看答案和解析>>

同步练习册答案