精英家教网 > 高中数学 > 题目详情
已知点A(1,5),B(3,9),O为坐标原点,若点C满足
OC
OA
OB
,其中α,β∈R,且α+β=1,则点C的轨迹方程为(  )
A、2x+y-7=0
B、2x-y+3=0
C、x-2y+9=0
D、x+2y-11=0
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:由点C满足
OC
OA
OB
,其中α,β∈R,且α+β=1,可知点C的轨迹是直线AB,由A,B的坐标写出过A,B的两点式方程,整理后得答案.
解答: 解:∵点C满足
OC
OA
OB
,其中α,β∈R,且α+β=1,
∴点C的轨迹是直线AB,
又∵A(1,5),B(3,9),∴直线AB的方程为
y-5
9-5
=
x-1
3-1

化简得:2x-y+3=0.
故选:B.
点评:本题考查共线向量基本定理及其意义,考查了直线方程的两点式,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若对于任何实数,二次不等式ax2-x+c<0的解集为R,那么a、c应满足(  )
A、a>0且ac≤
1
4
B、a<0且ac<
1
4
C、a<0且ac>
1
4
D、a<0且ac<0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在⊙O中,AB与CD是夹角为60°的两条直径,E、F分别是⊙O与直径CD上的动点,若
OE
BF
OA
OC
=0,则λ的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆锥SO中,AB、CD为底面圆的两条直径,AB∩CD=0,且AB⊥CD,SO=OB=2,P为SB的中点.异面直线SA与PD所成角的正切值为(  )
A、1
B、
2
C、2
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cosx(sinx+cosx)
(1)求f(
π
4
)的值;
(2)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x2
16
+
y2
m2
=1(m>0),如果直线y=
2
2
x
与椭圆的一个交点M,在x轴上的射影恰好是椭圆的右焦点F,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,且cosA=
1
3
,则sin2
B+C
2
+cos2A的值为(  )
A、
1
9
B、-
1
9
C、
1
10
D、-
1
10

查看答案和解析>>

科目:高中数学 来源: 题型:

y=ax2+bx+c(a≠0)的图象如图所示,则点M(a,bc)在(  ) 
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a2=5,a8=17,求数列的公差及通项公式.

查看答案和解析>>

同步练习册答案