精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2cosx(sinx+cosx)
(1)求f(
π
4
)的值;
(2)求函数f(x)的最小正周期及单调递增区间.
考点:三角函数中的恒等变换应用,正弦函数的图象
专题:三角函数的求值,三角函数的图像与性质
分析:(1)首先根据三角函数的恒等变换把函数关系式变形成正弦型函数,进一步求出函数的值.
(2)利用函数的关系式,进一步求出函数的周期和单调区间.
解答: 解:(1)f(x)=2cosx(sinx+cosx)
=2sinxcosx+2cos2x
=sin2x+cos2x+1
=
2
sin(2x+
π
4
)+1

所以:f(x)=
2
sin(2x+
π
4
)+1

则:f(
π
4
)=
2
sin
4
+1
=2;
(2)由于f(x)=
2
sin(2x+
π
4
)+1

所以函数的最小正周期为:T=
2

令:-
π
2
+2kπ≤2x+
π
4
π
2
+2kπ
(k∈Z),
解得:-
8
+kπ≤x≤
π
8
+kπ

所以函数的单调递增区间为:[-
8
+kπ,
π
8
+kπ
](k∈Z).
点评:本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的周期和单调区间的确定,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面α⊥平面β,直线a⊥β,a?α.求证:a∥α.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2+bx+c在区间[0,+∞)上具有单调性,则实数b应满足的条件是(  )
A、b≥0B、b≤0
C、b>0D、b<0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面四边形ABCD为菱形,AB=2,BD=2
3
,M,N分别是线段PA,PC的中点.
(Ⅰ)求证:MN∥平面ABCD;
(Ⅱ)求异面直线MN与BC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

为测量地面上B,C两点间的距离,在高100m的建筑物顶部选点A,在A出测得点B,C的俯角分别为30°和45°(B,C与建筑物底部在同一水平面上),且∠BAC=45°,则B,C之间的距离为(  )
A、100m
B、100
2
m
C、100
3
m
D、200m

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,5),B(3,9),O为坐标原点,若点C满足
OC
OA
OB
,其中α,β∈R,且α+β=1,则点C的轨迹方程为(  )
A、2x+y-7=0
B、2x-y+3=0
C、x-2y+9=0
D、x+2y-11=0

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=kx是曲线y=cosx的一条切线,则实数k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+a-1.
(1)若函数f(x)在区间[-1,1]上具有单调性,求a的取值范围;
(2)若函数f(x)在区间[-1,1]上的最小值为-3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=3x-3-x-2x,则满足(x-2)f(log 
1
2
x)<0的x的取值范围是
 

查看答案和解析>>

同步练习册答案