【题目】已知各项均为正数的数列
的前n项和为
,且
,
,![]()
(1)求数列
的通项公式;
(2)若对
,都有
,求实数a的取值范围;
(3)当
时,将数列
中的部分项按原来的顺序构成数列
且
证明:存在无数个满足条件的无穷等比数列
.
【答案】(1)
;
(2)
的取值范围为![]()
(3)证明见解析
【解析】
(1)直接利用递推关系式求出数列的通项公式;
(2)利用(1)的结论,进一步求出数列的前
项和,从而可求出
的取值范围;
(3)利用定义进行证明,再利用分类讨论思想求出结果.
解:(1)当
时,
,解得
,
当
时,由
得,
,
所以
,
,
因为
,
所以
,
所以
,
,
所以
;
(2)当
为奇数时,
,
由
,得
恒成立,
令
,则
,
所以
,
当
为偶数时,
,
由
,得
恒成立,
所以
,
因为
,
所以
的取值范围为
.
(3)证明:当
时,若
为奇数,则
,
令等比数列
的公比
,则
,
设
,
因为
,
所以![]()
,
因为
为正整数,
所以数列
是数列
中包含的无穷等比数列,
因为公比
有无数个不同的取值,对应着不同的等比数列,
因此无穷等比数列
有无数个.
科目:高中数学 来源: 题型:
【题目】设函数f(x)是定义在R上的偶函数,且f(x+2)=f(2-x),当x∈[-2,0]时,f(x)=
,则在区间(-2,6)上关于x的方程f(x)-log8(x+2)=0的解的个数为( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信运动”已成为当下热门的健身方式,小明的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
| 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 |
|
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
(1)若采用样本估计总体的方式,试估计小明的所有微信好友中每日走路步数超过5000步的概率;
(2)已知某人一天的走路步数超过8000步时被系统评定为“积极型”,否则为“懈怠型”.根据小明的统计完成下面的
列联表,并据此判断是否有
以上的把握认为“评定类型”与“性别”有关?
积极型 | 懈怠型 | 总计 | |
男 | |||
女 | |||
总计 |
附:![]()
![]()
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形
中,
,
,
,
,
,
为
上一点,且
,过
作
交
于
,现将
沿
折到
,使
,如图2.
![]()
(1)求证:
平面![]()
(2)在线段
上是否存在一点
,使
与平面
所成的角为
?若存在,确定点
的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究一种昆虫的产卵数
和温度
是否有关,现收集了7组观测数据列于下表中,并作出了如图的散点图.
![]()
温度 | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
产卵数 | 6 | 10 | 22 | 26 | 64 | 118 | 310 |
|
|
|
|
|
|
|
26 | 79.4 | 3.58 | 112 | 11.6 | 2340 | 35.72 |
其中
.
(1)根据散点图判断,
与
哪一个更适宜作为该昆虫的产卵数
与温度
的回归方程类型?(给出判断即可,不必说明理由).
(2)根据表中数据,建立
关于
的回归方程;(保留两位有效数字)
(3)根据
关于
的回归方程,估计温度为33℃时的产卵数.
(参考数据:
)
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是椭圆
与抛物线
的一个公共点,且椭圆与抛物线具有一个相同的焦点
.
(1)求椭圆
及抛物线
的方程;
(2)设过
且互相垂直的两动直线
,
与椭圆
交于
两点,
与抛物线
交于
两点,求四边形
面积的最小值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com