精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,O的中点.

1)证明:平面

2)若,求二面角的余弦值.

【答案】1)证明见解析;(2.

【解析】

1)取的中点F,连接,易得,由线面垂直判定定理可得平面,进而,再将与线面垂直判定定理相结合即可得结果.

2)建立如图所示的空间直角坐标系,可求出平面的一个法向量,取平面的一个法向量,根据图象结合即可得结果.

1)证明:取的中点F,连接.

因为F的中点,所以.

因为O中点,F的中点,所以.

因为,所以

因为平面平面,所以平面.

平面,所以.

因为O的中点,所以.

因为平面平面

所以平面.

2)解:以O为坐标原点,所在直线为x轴,平行的直线为y轴,所在直线为z轴建立如图所示的空间直角坐标系,∵

,∴

因为,所以

.

设平面的法向量,则

不妨取,则

平面的一个法向量,记二面角的大小为

由图可知为锐角,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个盒子中有5只同型号的灯泡,其中有3只一等品,2只二等品,现在从中依次取出2只,设每只灯泡被取到的可能性都相同,请用“列举法”解答下列问题:

(Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率;

(Ⅱ)求至少有一次取到二等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,抛物线的焦点是,是抛物线上的点,H为直线上任一点,A,B分别为椭圆C的上下顶点,且A,B,H三点的连线可以构成三角形.

(Ⅰ)求椭圆C的方程;

(Ⅱ)直线HA,HB与椭圆C的另一交点分别为点D,E,求证:直线DE过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆经过点,左、右焦点分别是点在椭圆上,且满足点只有两个.

(Ⅰ)求椭圆的方程;

(Ⅱ)过且不垂直于坐标轴的直线交椭圆两点,在轴上是否存在一点,使得的角平分线是轴?若存在求出,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自贡农科所实地考察,研究发现某贫困村适合种植两种药材,可以通过种植这两种药材脱贫.通过大量考察研究得到如下统计数据:药材的亩产量约为300公斤,其收购价格处于上涨趋势,最近五年的价格如下表:

编号

1

2

3

4

5

年份

2015

2016

2017

2018

2019

单价(元/公斤)

18

20

23

25

29

药材的收购价格始终为20/公斤,其亩产量的频率分布直方图如下:

1)若药材的单价(单位:元/公斤)与年份编号具有线性相关关系,请求出关于的回归直线方程,并估计2020年药材的单价;

2)用上述频率分布直方图估计药材的平均亩产量,若不考虑其他因素,试判断2020年该村应种植药材还是药材?并说明理由.

参考公式:(回归方程中)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD-A1B1C1D1中,底面ABCD为正方形,AA1=2AB=1EAD中点,FCC1中点.

1)求证:ADD1F

2)求证:CE//平面AD1F

3)求AA1与平面AD1F成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与的浓度是否相关,现采集到某城市周一至周五某时间段车流量与浓度的数据如下表:

时间

周一

周二

周三

周四

周五

车流量(万辆)

50

51

54

57

58

的浓度(微克/立方米)

39

40

42

44

45

1)根据上表数据,求出这五组数据组成的散点图的样本中心坐标;

2)用最小二乘法求出关于的线性回归方程

3)若周六同一时间段车流量是100万辆,试根据(2)求出的线性回归方程预测,此时的浓度是多少?

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,椭圆离心率为是椭圆C的短轴端点,且到焦点的距离为,点M在椭圆C上运动,且点M不与重合,点N满足

(1)求椭圆C的方程;

(2)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在单位正方体中,点P在线段上运动,给出以下四个命题:

异面直线间的距离为定值;

三棱锥的体积为定值;

异面直线与直线所成的角为定值;

二面角的大小为定值.

其中真命题有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案