【题目】如图,在四棱锥中,,,,,O为的中点.
(1)证明:平面;
(2)若,,,求二面角的余弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)取的中点F,连接,易得,,由线面垂直判定定理可得平面,进而,再将与线面垂直判定定理相结合即可得结果.
(2)建立如图所示的空间直角坐标系,可求出平面的一个法向量,取平面的一个法向量,根据图象结合即可得结果.
(1)证明:取的中点F,连接.
因为,F为的中点,所以.
因为O为中点,F为的中点,所以.
因为,所以,
因为,平面,平面,所以平面.
又平面,所以.
因为,O为的中点,所以.
因为,平面,平面,
所以平面.
(2)解:以O为坐标原点,所在直线为x轴,平行的直线为y轴,所在直线为z轴建立如图所示的空间直角坐标系,∵,
∴,∴,
则,,,,,
因为,所以,
故,.
设平面的法向量,则
不妨取,则
平面的一个法向量,记二面角的大小为,
由图可知为锐角,则.
科目:高中数学 来源: 题型:
【题目】一个盒子中有5只同型号的灯泡,其中有3只一等品,2只二等品,现在从中依次取出2只,设每只灯泡被取到的可能性都相同,请用“列举法”解答下列问题:
(Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率;
(Ⅱ)求至少有一次取到二等品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,抛物线的焦点是,是抛物线上的点,H为直线上任一点,A,B分别为椭圆C的上下顶点,且A,B,H三点的连线可以构成三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线HA,HB与椭圆C的另一交点分别为点D,E,求证:直线DE过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆经过点,左、右焦点分别是,,点在椭圆上,且满足的点只有两个.
(Ⅰ)求椭圆的方程;
(Ⅱ)过且不垂直于坐标轴的直线交椭圆于,两点,在轴上是否存在一点,使得的角平分线是轴?若存在求出,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自贡农科所实地考察,研究发现某贫困村适合种植,两种药材,可以通过种植这两种药材脱贫.通过大量考察研究得到如下统计数据:药材的亩产量约为300公斤,其收购价格处于上涨趋势,最近五年的价格如下表:
编号 | 1 | 2 | 3 | 4 | 5 |
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
单价(元/公斤) | 18 | 20 | 23 | 25 | 29 |
药材的收购价格始终为20元/公斤,其亩产量的频率分布直方图如下:
(1)若药材的单价(单位:元/公斤)与年份编号具有线性相关关系,请求出关于的回归直线方程,并估计2020年药材的单价;
(2)用上述频率分布直方图估计药材的平均亩产量,若不考虑其他因素,试判断2020年该村应种植药材还是药材?并说明理由.
参考公式:,(回归方程中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方体ABCD-A1B1C1D1中,底面ABCD为正方形,AA1=2,AB=1,E为AD中点,F为CC1中点.
(1)求证:AD⊥D1F;
(2)求证:CE//平面AD1F;
(3)求AA1与平面AD1F成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与的浓度是否相关,现采集到某城市周一至周五某时间段车流量与浓度的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量(万辆) | 50 | 51 | 54 | 57 | 58 |
的浓度(微克/立方米) | 39 | 40 | 42 | 44 | 45 |
(1)根据上表数据,求出这五组数据组成的散点图的样本中心坐标;
(2)用最小二乘法求出关于的线性回归方程;
(3)若周六同一时间段车流量是100万辆,试根据(2)求出的线性回归方程预测,此时的浓度是多少?
(参考公式:,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,椭圆离心率为,、是椭圆C的短轴端点,且到焦点的距离为,点M在椭圆C上运动,且点M不与、重合,点N满足.
(1)求椭圆C的方程;
(2)求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在单位正方体中,点P在线段上运动,给出以下四个命题:
异面直线与间的距离为定值;
三棱锥的体积为定值;
异面直线与直线所成的角为定值;
二面角的大小为定值.
其中真命题有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com