【题目】自贡农科所实地考察,研究发现某贫困村适合种植
,
两种药材,可以通过种植这两种药材脱贫.通过大量考察研究得到如下统计数据:药材
的亩产量约为300公斤,其收购价格处于上涨趋势,最近五年的价格如下表:
编号 | 1 | 2 | 3 | 4 | 5 |
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
单价(元/公斤) | 18 | 20 | 23 | 25 | 29 |
药材
的收购价格始终为20元/公斤,其亩产量的频率分布直方图如下:
![]()
(1)若药材
的单价
(单位:元/公斤)与年份编号
具有线性相关关系,请求出
关于
的回归直线方程,并估计2020年药材
的单价;
(2)用上述频率分布直方图估计药材
的平均亩产量,若不考虑其他因素,试判断2020年该村应种植药材
还是药材
?并说明理由.
参考公式:
,
(回归方程
中)
科目:高中数学 来源: 题型:
【题目】已知袋中装有红球,黑球共7个,若从中任取两个小球(每个球被取到的可能性相同),其中恰有一个红球的概率为
.
(1)求袋中红球的个数;
(2)若袋中红球比黑球少,从袋中任取三个球,求三个球中恰有一个红球的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经观测,某公路段在某时段内的车流量
(千辆/小时)与汽车的平均速度
(千米/小时)之间有函数关系:
.
(1)在该时段内,当汽车的平均速度
为多少时车流量
最大?最大车流量为多少?(精确到0.01)
(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某精准扶贫帮扶单位,为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助精准扶贫户利用互联网电商渠道销售当地特产苹果.苹果单果直径不同单价不同,为了更好的销售,现从该精准扶贫户种植的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间[50,95]内(单位:
),统计的茎叶图如图所示:
![]()
(Ⅰ)从单果直径落在[72,80)的苹果中随机抽取3个,求这3个苹果单果直径均小于76
的概率;
(Ⅱ)以此茎叶图中单果直径出现的频率代表概率.直径位于[65,90)内的苹果称为优质苹果,对于该精准扶贫户的这批苹果,某电商提出两种收购方案:
方案
:所有苹果均以5元/千克收购;
方案
:从这批苹果中随机抽取3个苹果,若都是优质苹果,则按6元/干克收购;若有1个非优质苹果,则按5元/千克收购;若有2个非优质苹果,则按4.5元/千克收购;若有3个非优质苹果,则按4元/千克收购.
请你通过计算为该精准扶贫户推荐收益最好的方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照
分成5组,制成如图所示频率分直方图.
![]()
(1)求图中x的值;
(2)求这组数据的平均数和中位数;
(3)已知满意度评分值在
内的男生数与女生数3:2,若在满意度评分值为
的人中随机抽取2人进行座谈,求2人均为男生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知梯形
中,
,
,
,四边形
为矩形,
,平面
平面
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求平面
与平面
所成锐二面角的余弦值;
(Ⅲ)在线段
上是否存在点
,使得直线
与平面
所成角的正弦值为
,若存在,求出线段
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术商功》中阐述:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”若称为“阳马”的某几何体的三视图如图所示,图中网格纸上小正方形的边长为1,对该几何体有如下描述:
①四个侧面都是直角三角形;
②最长的侧棱长为
;
③四个侧面中有三个侧面是全等的直角三角形;
④外接球的表面积为24π.
其中正确的描述为____.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图在四棱锥
中,底面
为矩形,
,
,平面
平面
,
为等腰直角三角形,且
,
为底面
的中心.
![]()
(1)求异面直线
与
所成角的余弦值;
(2)若
为
中点,
在棱
上,若
,
,且二面角
的正弦值为
,求实数
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com