【题目】已知函数f(x)=x3+ax2﹣9x+1(a∈R),当x≠1时,曲线y=f(x)在点(x0,f(x0)和点(2﹣x0,f(2﹣x0))处的切线总是平行,现过点(﹣2a,a﹣2)作曲线y=f(x)的切线,则可作切线的条数为( )
A..3B..2C.1D..0
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣2|﹣t,t∈R,g(x)=|x+3|.
(1)x∈R,有f(x)≥g(x),求实数t的取值范围;
(2)若不等式f(x)≤0的解集为[1,3],正数a、b满足ab﹣2a﹣b=2t﹣2,求a+2b的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和
满足
.
(1)证明数列
为等差数列,并求出数列
的通项公式.
(2)若不等式
,对任意
恒成立,求
的取值范围.
(3)记数列
的前
项和为
,是否存在正整数
,
使得
成立,若存在,求出所有符合条件的有序实数对(
,
);若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
:
(参数
),以坐标原点
为极点,
轴的非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,点
的极坐标为
.
(1)将曲线
的极坐标方程化为直角坐标方程,并求出点
的直角坐标;
(2)设
为曲线
上的点,求
中点
到曲线
上的点的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于集合
,定义函数
对于两个集合
,定义集合
. 已知
,
.
(Ⅰ)写出
和
的值,并用列举法写出集合
;
(Ⅱ)用
表示有限集合
所含元素的个数,求
的最小值;
(Ⅲ)有多少个集合对
,满足
,且
?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】武汉某科技公司为提高市场销售业绩,现对某产品在部分营销网点进行试点促销活动.现有两种活动方案,在每个试点网点仅采用一种活动方案,经统计,2018年1月至6月期间,每件产品的生产成本为10元,方案1中每件产品的促销运作成本为5元,方案2中每件产品的促销运作成本为2元,其月利润的变化情况如图①折线图所示.
![]()
(1)请根据图①,从两种活动方案中,为该公司选择一种较为有利的活动方案(不必说明理由);
(2)为制定本年度该产品的销售价格,现统计了8组售价xi(单位:元/件)和相应销量y(单位:件)(i=1,2,…8)并制作散点图(如图②),观察散点图可知,可用线性回归模型拟合y与x的关系,试求y关于x的回归方程(系数精确到整数);
参考公式及数据:
40,
660,
xiyi=206630,
x
12968,
,
,
(3)公司策划部选
1200lnx+5000和
═
x3+1200两个模型对销量与售价的关系进行拟合,现得到以下统计值(如表格所示):
|
| |
| 52446.95 | 122.89 |
| 124650 | |
相关指数 | R | R |
相关指数:R2=1
.
(i)试比较R12,R22的大小(给出结果即可),并由此判断哪个模型的拟合效果更好;
(ii)根据(1)中所选的方案和(i)中所选的回归模型,求该产品的售价x定为多少时,总利润z可以达到最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知
是正三角形,EA,CD都垂直于平面ABC,且
,二面角
的平面角大小为
,F是BE的中点,求证:
![]()
(1)
平面ABC;
(2)
平面EDB;
(3)求几何体
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
的右顶点为A,以A为圆心,b为半径做圆,圆A与双曲线C的一条渐近线相交于M,N两点,若
(
为坐标原点),则双曲线C的离心率为___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com