精英家教网 > 高中数学 > 题目详情
已知函数,则____________

试题分析:根据题意,由于,因此所求的解析式为,故可知答案为
点评:解决该试题的关键是利用函数的解析式来求解函数值,注意变量的分类讨论。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)(xR)为奇函数, f(2)="1," f(x+2)=f(x)+f(2),则f(3)等于(   )
A.B.1C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
已知函数
(1)若对于定义域内的恒成立,求实数的取值范围;
(2)设有两个极值点,求证:
(3)设若对任意的,总存在,使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)某工厂有214名工人, 现要生产1500件产品, 每件产品由3个A型零件与1个B型零件配套组成, 每个工人加工5个A型零件与3个B型零件所需时间相同. 现将全部工人分为两组, 分别加工一种零件, 同时开始加工. 设加工A型零件的工人有x人, 在单位时间内每人加工A型零件5k(k∈N*), 加工完A型零件所需时间为g(x), 加工完B型零件所需时间为h (x).
 (Ⅰ) 试比较大小, 并写出完成总任务的时间的表达式;
(Ⅱ) 怎样分组才能使完成任务所需时间最少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,对使
,则的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,且函数恰有3个不同的零点,则实数的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数与函数的图像关于直线对称,则函数的单调递增区间是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,对R的值至少有一个为正数,则的取值范围是             .

查看答案和解析>>

同步练习册答案