精英家教网 > 高中数学 > 题目详情

【题目】(2015·上海)设z1, z2C, ,则“z1, z2中至少有一个数是虚数”是“z1-z2是虚数”的( )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件

【答案】B
【解析】若z1, z2皆是实数,则z1-z2一定不是虚数,因此当z1-z2是虚数时,则“z1, z2中至少有一个数是虚数”成立,即必要性成立; 当z1, z2中至少有一个数是虚数,z1-z2不一定是虚数,如z1=z2=i,即充分性不成立,选B.
形如a+bi(a,b ∈ R)的数叫复数,其中a,b分别是它的实部和虚部.若b=0,则a+bi为实数,若b≠0。,则a+bi为虚数,若a=0且b≠0,则a+bi为纯虚数.判断概念必须从其定义出发,不可想当然.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=f'(1)ex1﹣f(0)x+ 的导数,e为自然对数的底数)g(x)= +ax+b(a∈R,b∈R)
(Ⅰ)求f(x)的解析式及极值;
(Ⅱ)若f(x)≥g(x),求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 , 抛物线C2焦点均在x轴上,C1的中心和C2顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,则C1的左焦点到C2的准线之间的距离为(

x

3

﹣2

4

y

-2

0

﹣4


A. -1
B. -1
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,我海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其北偏东30°方向与它相距20海里的B处有一外国船只,且D岛位于海监船正东18海里处.
(1)求此时该外国船只与D岛的距离;
(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D岛12海里的E处(E在B的正南方向),不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱ABC﹣A1B1C1中,AB=1,BB1=2,求:
(1)异面直线B1C1与A1C所成角的大小;
(2)四棱锥A1﹣B1BCC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是(
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·新课标1卷)执行右面的程序框图,如果输入的t=0.01,则输出的n=( )

A.5
B.6
C.10
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程选讲]在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C1的参数方程为 为参数),曲线C2的极坐标方程为
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)设P为曲线C1上一点,Q曲线C2上一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为F1 , F2 , 上顶点为B,若△BF1F2的周长为6,且点F1到直线BF2的距离为b. (Ⅰ)求椭圆C的方程;
(Ⅱ)设A1 , A2是椭圆C长轴的两个端点,点P是椭圆C上不同于A1 , A2的任意一点,直线A1P交直线x=m于点M,若以MP为直径的圆过点A2 , 求实数m的值.

查看答案和解析>>

同步练习册答案