精英家教网 > 高中数学 > 题目详情
5.已知△ABC的外接圆半径为R,三个内角A、B、C所对的边分别为a、b、c,若b($\sqrt{2}$sinA-sinB)+2R(sin2C-sin2A)=0.则sinC的值为$\frac{\sqrt{2}}{2}$.

分析 根据正弦定理得出a,b,c的关系,利用余弦定理解出cosC,得出sinC.

解答 解:由正弦定理得$\frac{a}{sinA}=\frac{c}{sinC}=2R$,∴2RsinA=a,2RsinC=c.
∵b($\sqrt{2}$sinA-sinB)+2R(sin2C-sin2A)=0,
∴$\sqrt{2}$bsinA-bsinB+csinC-asinA=0.
∴$\sqrt{2}ab$-b2+c2-a2=0,即a2+b2-c2=$\sqrt{2}ab$.
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}=\frac{\sqrt{2}}{2}$,即C=$\frac{π}{4}$.
∴sinC=$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.

点评 本题考查了正余弦定理在解三角形中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\frac{{x}^{2}+3}{|x-1|}$,g(x)=1+kcosx,则f(x)的值域是[2,+∞),若对任意的x1,x2∈R,均有f(x1)≥g(x2),则实数k的取值范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知z∈C,则|z一4|+|z+3i|的最小值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等差数列{an}中,解答下列问题:
(1)已知a1+a2+a3=12,与a4+a5+a6=18,求a7+a8+a9的值;
(2)设a3=1012与an=3112且d=70,求项数n的值;
(3)若a1=1且an+1-an=$\frac{1}{2}$,求a11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知全集U=R,集合A={x|x<2},B={x|lg(x-1)>0},则A∩(∁UB)=(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\frac{1}{1-i}$十$\frac{1}{2+3i}$=x+yi,求实数x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.计算:$\frac{1}{cos50°}$+tan10°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}满足a1+a3=8,a2+a4=12.
(Ⅰ)求数列{an}的前n项和为Sn
(Ⅱ)若$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$=$\frac{999}{1000}$,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=ln(1+x).
(Ⅰ)若曲线y=f(x)在点(0,f(0))处的切线方程为y=g(x),当x≥0时,f(x)≤$\frac{x(1+tx)}{1+g(x)}$,求t的最小值;
(Ⅱ)当n∈N*时,证明:$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}>-\frac{1}{4n}+ln2$.

查看答案和解析>>

同步练习册答案