分析 (1)推导△PAC是以∠PAC为直角的直角三角形,PA⊥△ABC,PA⊥CE,CE⊥PB,再由EF⊥PB,能证明PB⊥平面EFC.
(2)由PB⊥CE,PA⊥平面ABC,知AB⊥CE,过F作FG⊥AB点于G,则∠FEB是二面角B-CE-F的平面角,由此能求出二面角B-CE-F的正切值.
解答
证明:(1)∵PA2+AC2=36+64=100=PC2,
∴△PAC是以∠PAC为直角的直角三角形.…(1分)
∵PA⊥AB,PA⊥AC,AC∩AB=A,
∴PA⊥△ABC.…(3分)∴PA⊥CE,
由题意CE⊥△PAB,则CE⊥PB,
又EF⊥PB,EF∩CE=E,
故PB⊥平面EFC…(5分)
解:(2)由(1)知PB⊥CE,PA⊥平面ABC,
∴AB是PB在平面ABC上的射影,故AB⊥CE.…(6分)
在平面PAB内,过F作FG⊥AB点于G,
则FG⊥平面ABC,EG是EF在平面ABC上的射影,
∴EF⊥EC.
故∠FEB是二面角B-CE-F的平面角…(8分)
$tan∠FEB=\frac{1}{tan∠PBA}=\frac{AB}{AP}=\frac{10}{6}=\frac{5}{3}$,
即二面角B-CE-F的正切值为$\frac{5}{3}$.…(10分)
点评 本题考查线面垂直的证明,考百二面角的正争值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
| A. | 若m∥n,m⊥α,则n⊥α | B. | 若m⊥α,m∥n,n∥β,则α⊥β | ||
| C. | 若m⊥α,m⊥β,则α∥β | D. | 若m∥α,n∥β,α∥β,则m∥n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\stackrel{∧}{y}$=2x-2.1 | B. | $\stackrel{∧}{y}$=-2x+9.5 | C. | $\stackrel{∧}{y}$=0.3x+2.6 | D. | $\stackrel{∧}{y}$=-0.3x+4.4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com