精英家教网 > 高中数学 > 题目详情
19.如图,△ABC是圆内接三角形,∠BAC的平分线交圆于点D,交BC于点F,过点B圆的切线与CD的延长线交于点E.
(1)求证;∠EBD=∠CBD.
(2)若DE=2,DC=3,求边BC的长.

分析 (1)利用角与弧的关系,得到角相等;
(2)利用角相等推导出三角形相似,得到边成比例,即可得出结论.

解答 (1)证明:∵BE是切线,由弦切角定理,∴∠EBD=∠DAB  …(1分)
∵∠DAC,∠CBD是同弧上的圆周角,∴∠CBD=∠DAC   …(2分)
∵AD是∠BAC的平分线,∴∠DAB=∠DAC  …(3分)
∴∠EBD=∠CBD  …(4分)
(2)解:∵BE是切线,由切割线定理,EB2=ED•EC=10,
∴EB=$\sqrt{10}$…(6分)
由弦切角定理,∠EBD=∠DCB    …(7分)
∴由(1)知,∠EBD=∠CBD=∠DCB,∴DC=DB=3 …(8分)
∵∠BED=∠CED,
∴△BED∽△CEB …(10分)
∴$\frac{BC}{BD}=\frac{EC}{BE}$,∴$\frac{BC}{3}=\frac{5}{\sqrt{10}}$,
∴BC=$\frac{3\sqrt{10}}{2}$  …(12分)

点评 本题考查了弦切角、圆周角与弧的关系,还考查了三角形相似的知识,本题总体难度不大,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知9x-3x+1-k≥0在[1,2]上恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某盒里有20个球,其半径大小的频率分布直方图如图所示.
(Ⅰ)下表是这些球的半径的频数分布表,求正整数a,b的值;
区间[75,80)[80,85)[85,90)[90,95)[95,100]
人数1a76b
(Ⅱ)半径在[90,95)和[95,100)里的球分别用1,2,3,…标记,现从这两个区间里的球中各摸出一球.
①若用x表示从区间[90,95)中摸出的球的号码,y表示从区间[95,100)中摸出的球的号码,请写出数对(x,y)的所有情形;
②求这两球的号码之和大于5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知Sn为数列{an}的前n项和,a1=c(c为常数且c≠0),且Sn=tan-c,n∈N*
(1)求实数t的值及{an}的通项公式;
(2)设bn=$\frac{n}{{a}_{n}}$,cn=$\frac{c•{2}^{n}}{{S}_{n}•{S}_{n+1}}$,记数列{bn},{cn}的前n项和分别为En、Fn,记Tn=En+Fn,是否存在最小整数M,对任意的n∈N*,有Tn≤M恒成立?若存在,求出M的值;若不存在,请说明理由.(记[x]表示不超过x的最大整数,如:[3]=3,[3,2]=3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,AB是半径为2的圆O的弦,CD是圆O的切线,C是切点,D是OB的延长线与CD的交点,CD∥AB,若CD=$\sqrt{5}$,则AC等于(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{2\sqrt{6}}{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若数列{an}的每一项都不为零,且对于任意的n∈N*,都有$\frac{{a}_{n+2}}{{a}_{n}}$=q(q为常数),则称数列{an}为“类等比数列”.已知数列{bn}满足:b1=b(b∈R,b≠0),对于任意的n∈N*,都有bn•bn+1=2n+1
(1)求证:数列{bn}是“类等比数列”;
(2)若{bn}是单调递增数列,求实数b的取值范围;
(3)设数列{bn}的前n项和为Sn,试探讨$\lim_{n→∞}\frac{S_n}{{{b_n}+{b_{n+1}}}}$是否存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数$\frac{a+i}{b-3i}$(a,b∈R)对应的点在虚轴上,则ab的值是(  )
A.-15B.3C.-3D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=log7(x2-2x-3)的单调递减区间为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算下列各式:
(1)3(2$\overrightarrow{a}$-$\overrightarrow{b}$)-2(4$\overrightarrow{a}$-3$\overrightarrow{b}$);
(2)$\frac{1}{3}$(4$\overrightarrow{a}$+3$\overrightarrow{b}$)-$\frac{1}{2}$(3$\overrightarrow{a}$-$\overrightarrow{b}$)-$\frac{3}{2}$$\overrightarrow{b}$;
(3)2(3$\overrightarrow{a}$-4$\overrightarrow{b}$+$\overrightarrow{c}$)-3(2$\overrightarrow{a}$+$\overrightarrow{b}$-3$\overrightarrow{c}$).

查看答案和解析>>

同步练习册答案