精英家教网 > 高中数学 > 题目详情
20.过点M(-2,0)作直线l与双曲线x2-y2=1交于A,B两点,以OA,OB为邻边作平行四边形OAPB,求点P的轨迹方程.

分析 当直线l的斜率存在时,和双曲线方程联立后利用根与系数关系,求出AB的中点,可得P的轨迹方程;当过M(-2,0)的直线l的斜率不存在时,同样满足

解答 解:设直线l的方程为y=k(x+2),代入双曲线x2-y2=1,可得(1-k2)x2-4k2x-4k2-1=0,
设A(x1,y1),B(x2,y2),则x1+x2=$\frac{4{k}^{2}}{1-{k}^{2}}$,y1+y2=$\frac{4k}{1-{k}^{2}}$
∴AB的中点为($\frac{2{k}^{2}}{1-{k}^{2}}$,$\frac{2k}{1-{k}^{2}}$),
设P(x,y),则x=$\frac{4{k}^{2}}{1-{k}^{2}}$,y=$\frac{4k}{1-{k}^{2}}$
∴x2+4x-y2=0;
当过M(-2,0)的直线l的斜率不存在时,直线l的方程为x=-2,把x=-2代入双曲线x2-y2=1得,A(-2,$\sqrt{3}$),B(-2,-$\sqrt{3}$),P(-4,0)同样满足.

点评 本题考查了直线与圆锥曲线的关系,直线与圆锥曲线的关系问题,常用“设而不求的”解题方法,即利用一元二次方程的根与系数关系求得直线与圆锥曲线的两个交点的横坐标的和与积,此题考查了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若x1,x2,x3,…,xn的平均数为$\overline x$,则x1+a,x2+a,…,xn+a的平均数为(  )
A.$\overline x+a$B.$a\overline x$C.${a^2}\overline x$D.$\overline x+{a^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,在圆O:x2+y2=4上取一点A(-$\sqrt{3}$,1),E、F为y轴上的两点,且AE=AF,延长AE,AF分别与圆交于点MN.则直线MN的斜率为-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知α,β∈($\frac{7π}{4}$,$\frac{9π}{4}$),则“tan2α>tan2β”是“3α>3β”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}满足a1=-1,an=$\frac{-3{a}_{n-1}-8}{2{a}_{n-1}+5}$(n≥2).
(1)证明:数列{$\frac{1}{{a}_{n}+2}$}是等差数列;
(2)若数列{bn}满足bn+12=bnbn+2(n∈N*),且b1=2,b4=16,求数列{(2n-1)anbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和是Sn(n∈N*),a1=1且Sn•Sn-1+$\frac{1}{2}$an=0.
(1)求数列{an}的通项公式;
(2)求$\frac{1}{{S}_{1}{S}_{2}}$-$\frac{1}{{S}_{2}{S}_{3}}$+$\frac{1}{{S}_{3}{S}_{4}}$-$\frac{1}{{S}_{4}{S}_{5}}$+…+(-1)n+1$\frac{1}{{s}_{n{S}_{n+1}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,若$\frac{2}{3}$bc=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{cosA}$,且cosC=$\frac{\sqrt{5}}{5}$,则A=(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.离心率为2的双曲线M:x2-$\frac{{y}^{2}}{m}$=1(m>0)上一点P到左、右焦点F1,F2的距离之和为10,则$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$等于(  )
A.12B.14C.16D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l:mx-y-1=0(m∈R),圆C:x2-2x+y2-3=0.
(1)证明:不论m取任何实数,直线l总于圆C相交;
(2)设直线l将圆C分割成的两端圆弧的弧长之比为λ,试探求实数λ的取值范围.

查看答案和解析>>

同步练习册答案