精英家教网 > 高中数学 > 题目详情
11.如图,在圆O:x2+y2=4上取一点A(-$\sqrt{3}$,1),E、F为y轴上的两点,且AE=AF,延长AE,AF分别与圆交于点MN.则直线MN的斜率为-$\sqrt{3}$.

分析 不适一般性,取特殊点,即可得出结论.

解答 解:由题意,取M(0,2),AM的斜率为$\frac{\sqrt{3}}{3}$,
∵AE=AF,
∴AN的斜率为-$\frac{\sqrt{3}}{3}$,过原点,
∴N(($\sqrt{3}$,-1),
∴直线MN的斜率为$\frac{2+1}{0-\sqrt{3}}$=-$\sqrt{3}$.
故答案为:-$\sqrt{3}$.

点评 本题考查直线与圆的位置关系,考查斜率的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.圆x2+y2=8内有一点P0(-1,2),AB为过点P0且倾斜角为α的弦.
(1)当α=135°时,求AB的长;
(2)若AB=2$\sqrt{7}$,写出直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知tanα=3,计算$\frac{3sinα+cosα}{sinα-2cosα}$
(2)化简:$\frac{-sin(π+α)+sin(-α)-tan(2π+α)}{tan(α+π)+cos(-α)+cos(π-α)}$
(3)已知$sinα+cosα=\frac{1}{2}(0<α<π)$求sinαcosα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC在平面α内,直线CD⊥平面α,P是平面α内的一个动点,设P到直线AB的距离为d1,P到直线CD的距离为d2,若d1=d2,则动点P的轨迹是(  )
A.B.抛物线C.椭圆D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知lgx+lgy+lgz=0,求证:$\frac{1}{{x}^{2}(y+z)}$+$\frac{1}{{y}^{2}(x+z)}$+$\frac{1}{{z}^{2}(x+y)}$≥$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线l1:3x+4y+1=0与直线l2:4x-3y+2=0,则直线l1与直线l2的位置关系是(  )
A.平行B.垂直C.重合D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线过点P(1,1),且在x轴上的截距等于它在y轴上的截距的2倍,并能与坐标轴围成三角形,求直线方程及与坐标轴围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.过点M(-2,0)作直线l与双曲线x2-y2=1交于A,B两点,以OA,OB为邻边作平行四边形OAPB,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题p:方程$\frac{x^2}{2}+\frac{y^2}{m}$=1表示焦点在x轴上的椭圆,命题q:对任意实数x不等式x2+2mx+2m+3>0恒成立.
(Ⅰ)若“¬q”是真命题,求实数m的取值范围;
(Ⅱ)若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案