精英家教网 > 高中数学 > 题目详情
1.圆x2+y2=8内有一点P0(-1,2),AB为过点P0且倾斜角为α的弦.
(1)当α=135°时,求AB的长;
(2)若AB=2$\sqrt{7}$,写出直线AB的方程.

分析 (1)依题意直线AB的斜率为-1,直线AB的方程,根据圆心0(0,0)到直线AB的距离,由弦长公式求得AB的长.
(2)分类讨论,利用AB=2$\sqrt{7}$,即可写出直线AB的方程.

解答 解:(1)依题意直线AB的斜率为-1,直线AB的方程为:y-2=-(x+1),
圆心0(0,0)到直线AB的距离为d=$\frac{\sqrt{2}}{2}$,则|AB|=2$\sqrt{8-\frac{1}{2}}$=$\sqrt{30}$.
(2)①当直线AB的斜率不存在时,l:x=-1,此时d=1,|AB|=2$\sqrt{8-1}$=2$\sqrt{7}$,满足题意…(7分)
②设AB的斜率为k,则y-2=k(x+1),即:kx-y+(2+k)=0,
圆心0(0,0)到直线AB的距离为d=$\frac{|2+k|}{\sqrt{{k}^{2}+1}}$,
|AB|=2$\sqrt{\frac{7{k}^{2}-4k+4}{{k}^{2}+1}}$=2$\sqrt{7}$
解得k=-$\frac{3}{4}$,此时AB的方程为:3x+4y-5=0…(11分)
综上所述:直线AB的方程为:x=-1或3x+4y-5=0…(12分)

点评 本题考查用点斜式求直线方程,点到直线的距离公式,弦长公式的应用,求出圆心0(0,0)到直线AB的距离为d,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,则f(2 )=-1;2f(2015)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2-2x,则f(-3)=(  )
A.-3B.3C.15D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设等差数列{an}的前n项和为Sn,且满足an+Sn=An2+Bn+C,若A=5,C=1,则B=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:方程$\frac{{x}^{2}}{9-2k}$+$\frac{{y}^{2}}{k}$=1表示焦点在y轴上的椭圆;命题q:方程$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{k}$=1表示双曲线,且离心率e∈($\sqrt{3}$,2),若命题p∧q为假命题,p∨q为真命题,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.f(3x)=x,则f(10)=(  )
A.log310B.lg3C.103D.310

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过点P(-2,0)的直线与抛物线C:y2=4x相交于A,B两点,且|PA|=$\frac{1}{2}$|AB|,则点A到抛物线C的焦点的距离为$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若x1,x2,x3,…,xn的平均数为$\overline x$,则x1+a,x2+a,…,xn+a的平均数为(  )
A.$\overline x+a$B.$a\overline x$C.${a^2}\overline x$D.$\overline x+{a^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,在圆O:x2+y2=4上取一点A(-$\sqrt{3}$,1),E、F为y轴上的两点,且AE=AF,延长AE,AF分别与圆交于点MN.则直线MN的斜率为-$\sqrt{3}$.

查看答案和解析>>

同步练习册答案