精英家教网 > 高中数学 > 题目详情
19.已知△ABC在平面α内,直线CD⊥平面α,P是平面α内的一个动点,设P到直线AB的距离为d1,P到直线CD的距离为d2,若d1=d2,则动点P的轨迹是(  )
A.B.抛物线C.椭圆D.双曲线

分析 由题意,在平面α内,P到直线AB的距离等于P到点C的距离,即可得出动点P的轨迹.

解答 解:由题意,在平面α内,P到直线AB的距离等于P到点C的距离,
∴动点P的轨迹是抛物线.
故选:B.

点评 本题考查轨迹方程,考查抛物线的定义,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设等差数列{an}的前n项和为Sn,且满足an+Sn=An2+Bn+C,若A=5,C=1,则B=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若x1,x2,x3,…,xn的平均数为$\overline x$,则x1+a,x2+a,…,xn+a的平均数为(  )
A.$\overline x+a$B.$a\overline x$C.${a^2}\overline x$D.$\overline x+{a^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若以F1(-3,0),F2(3,0)为焦点的双曲线与直线y=x-1有公共点,则该双曲线的离心率的最小值为(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{3\sqrt{5}}{5}$C.$\frac{3}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知,M={x|x(x-1)<0},N={x|x>0},则M∩N等于(  )
A.(0,1)B.(0,+∞)C.(0,1)∪(1,+∞)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,多面体ABCDE中,ABCD是矩形,AB=2$\sqrt{2}$,BC=2,直线DA⊥平面ABE,AE=BE,O为棱AB的中点.
(1)求证:直线BD⊥平面OCE;
(2)在线段BD上是否存在点F,使直线AF∥平面OCE?若存在,求线段DF的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,在圆O:x2+y2=4上取一点A(-$\sqrt{3}$,1),E、F为y轴上的两点,且AE=AF,延长AE,AF分别与圆交于点MN.则直线MN的斜率为-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知α,β∈($\frac{7π}{4}$,$\frac{9π}{4}$),则“tan2α>tan2β”是“3α>3β”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.离心率为2的双曲线M:x2-$\frac{{y}^{2}}{m}$=1(m>0)上一点P到左、右焦点F1,F2的距离之和为10,则$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$等于(  )
A.12B.14C.16D.18

查看答案和解析>>

同步练习册答案