【题目】一个几何体,它的下面是一个圆柱,上面是一个圆锥,并且圆锥的底面与圆柱的上底面重合,圆柱的底面直径为3 cm,高为4 cm,圆锥的高为3 cm,画出此几何体的直观图.
科目:高中数学 来源: 题型:
【题目】下列命题:
①在圆柱的上、下两底面的圆周上各取一点,则这两点的连线是圆柱的母线;
②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;
③在圆台上、下两底面的圆周上各取一点,则这两点的连线是圆台的母线;
④圆柱的任意两条母线相互平行.
其中正确的是( )
A. ①② B. ②③ C. ①③ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】文科做:数列中,且满足
(I)求数列的通项公式;
(II)设,求;
(III)设=,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中是仪器的月产量.
(1) 将利润表示为月产量的函数;
(2) 当月产量为何值时,公司所获利润最大?最大利润为多少元? (利润=总收益-总成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数的定义域为,若存在闭区间,使得函数满足:①在
上是单调函数;②在 上的值域是,则称区间是函数 的“和谐区间”,
下列结论错误的是( )
A.函数 存在 “和谐区间”
B.函数 存在 “和谐区间”
C.函数 不存在 “和谐区间”
D.函数 存在 “和谐区间”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面平面,,是等边三角形.已知,,.
(1)设是上的一点,证明:平面平面;
(2)当点位于线段什么位置时,平面?
(3)求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中,,,分别为棱的中点.
(1)求二面角的平面角的余弦值;
(2)在线段上是否存在一点,使得平面?若存在,确定点的位置并证明结论;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,
(1)当时,证明:函数不是奇函数;
(2)判断函数的单调性,并利用函数单调性的定义给出证明;
(3)若是奇函数,且在时恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com