精英家教网 > 高中数学 > 题目详情
19.已知θ为锐角,且cos(θ+$\frac{π}{4}$)=$\frac{1}{5}$,则cosθ=$\frac{4\sqrt{3}+\sqrt{2}}{10}$.

分析 利用同角三角函数的基本关系求得sin($θ+\frac{π}{4}$)的值,再利用两角和差的余弦公式求得cosθ=cos[($θ+\frac{π}{4}$)-$\frac{π}{4}$]的值.

解答 解:∵θ为锐角,且cos(θ+$\frac{π}{4}$)=$\frac{1}{5}$,∴θ+$\frac{π}{4}$为锐角,
故sin($θ+\frac{π}{4}$)=$\sqrt{{1-cos}^{2}(θ+\frac{π}{4})}$=$\frac{2\sqrt{6}}{5}$,
则cosθ=cos[($θ+\frac{π}{4}$)-$\frac{π}{4}$]=cos(θ+$\frac{π}{4}$)cos$\frac{π}{4}$+sin(θ+$\frac{π}{4}$)sin$\frac{π}{4}$=$\frac{1}{5}$•$\frac{\sqrt{2}}{2}$+$\frac{2\sqrt{6}}{5}$•$\frac{\sqrt{2}}{2}$=$\frac{4\sqrt{3}+\sqrt{2}}{10}$,
故答案为:$\frac{4\sqrt{3}+\sqrt{2}}{10}$.

点评 本题主要考查同角三角函数的基本关系、两角和差的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设全集U={1,2,3,4,5,6,7},集合M={1,2,3,5},N={2,4,5},则Venn图中阴影部分表示的集合是(  )
A.{1,3}B.{4}C.{3,5}D.{5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不等式x2-2ax+a+2≤0的解集为M,如果M⊆[1,4],求实数a的取值范围是(  )
A.(-1,$\frac{18}{7}$]B.(-1,2]C.[2,3)D.(-$\frac{6}{7}$,$\frac{18}{7}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设定义域为R的函数f(x)=$\left\{{\begin{array}{l}{|{lg|x|}|,x≠0}\\{0,x=0}\end{array}}\right.\end{array}$,则当a<0时,方程f2(x)+af(x)=0的实数解的个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.两直线l1,l2的方程分别为x+y$\sqrt{1-cosθ}$+b=0和xsinθ+y$\sqrt{1+cosθ}$-a=0(a,b为实常数),θ为第三象限角,则两直线l1,l2的位置关系是(  )
A.相交且垂直B.相交但不垂直C.平行D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等比数列{an},a1=1,a4=-8,则S7=$\frac{128}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.直线x+$\sqrt{3}$y+2=0与直线x+1=0的夹角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设F1,F2为椭圆C1:$\frac{x^2}{a^2}$+$\frac{y{\;}^{2}}{b^2}$=1(a>b>0)与双曲线C2的公共的左、右焦点,它们在第一象限内交于点M,△MF1F2是以线段MF1为底边的等腰三角形,若椭圆C1的离心率e∈[${\frac{3}{8}$,$\frac{4}{9}}$].则双曲线C2的离心率的取值范围是(  )
A.$[{\frac{3}{2},4}]$B.$[{\frac{3}{2},+∞})$C.(1,4]D.$[{\frac{5}{4},\frac{5}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若cos(65°+α)=$\frac{2}{3}$,其中α为第三象限角,则cos(115°-α)+sin(α-115°)=$\frac{{\sqrt{5}-2}}{3}$.

查看答案和解析>>

同步练习册答案