精英家教网 > 高中数学 > 题目详情
7.设Sn为数列{an}的前n项和,a1=1,Sn=2Sn-1+n-2(n≥2),则a2017等于(  )
A.22016-1B.22016+1C.22017-1D.22017+1

分析 推导出an=Sn-Sn-1=Sn-1+n-2,n≥2,从而an+1=Sn+n-1,进而an+1+1=2(an+1),由此得到{an+1}是首项为2,公比为2的等比数列,从而能求出结果.

解答 解:∵Sn为数列{an}的前n项和,a1=1,Sn=2Sn-1+n-2(n≥2),
∴an=Sn-Sn-1=Sn-1+n-2,n≥2,①
∴an+1=Sn+n-1,②
②-①,得:an+1-an=an+1,
∴an+1=2an+1,∴an+1+1=2(an+1),
∴$\frac{{a}_{n+1}+1}{{a}_{n}+1}=2$,又a1+1=2,
∴{an+1}是首项为2,公比为2的等比数列,
∴${a}_{n}+1={2}^{n}$,∴${a}_{n}={2}^{n}-1$,
∴${a}_{2017}={2}^{2017}-1$.
故选:C.

点评 本题考查数列的第2017项的求法,是中档题,解题时要认真审题,注意数列的递推公式、等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知$\overrightarrow{a}$与$\overrightarrow{b}$均为单位向量,其夹角为θ,若|$\overrightarrow{a}$$-\overrightarrow{b}$|>1,则θ的取值范围是(  )
A.$\frac{π}{6}$<θ$≤\frac{π}{2}$B.$\frac{π}{3}$<θ$≤\frac{π}{2}$C.$\frac{π}{3}$<θ≤πD.$\frac{π}{6}$<θ≤π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an} 的前n项和为Sn,且Sn=$\sqrt{n+1}$-1,n∈N*.算出数列的前4项的值后,猜想该数列的通项公式是$\sqrt{n+1}$-$\sqrt{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若f1(x)=sinx,f2(x)=f1′(x),f3(x)=f2′(x),…fk+1(x)=fk′(x),则f2007($\frac{π}{3}$),(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线l与直线3x+y+8=0垂直,则直线l的斜率为(  )
A.-3B.-$\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=ex-x在x=0处的切线的斜率为(  )
A.0B.1C.2D.e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知A${\;}_{n}^{3}$=6C${\;}_{n}^{2}$,求n的值;
(2)求二项式(1-2x)4的展开式中第4项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若椭圆$\frac{{x}^{2}}{6}$$+\frac{{y}^{2}}{4}$=1的两个焦点为F1,F2,P是椭圆上一点,若PF1⊥PF2,则△PF1F2的面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等比数列{an}满足,a2=3,a5=81.
(1)求数列{an}的通项公式;
(2)设bn=log3an,求{bn}的前n项和为Sn

查看答案和解析>>

同步练习册答案