| A. | $\frac{π}{6}$<θ$≤\frac{π}{2}$ | B. | $\frac{π}{3}$<θ$≤\frac{π}{2}$ | C. | $\frac{π}{3}$<θ≤π | D. | $\frac{π}{6}$<θ≤π |
分析 由向量数量积的定义和向量的平方即为模的平方,化简可得cosθ<$\frac{1}{2}$,再由夹角范围和余弦函数的图象和性质,即可得到所求范围.
解答 解:$\overrightarrow{a}$与$\overrightarrow{b}$均为单位向量,其夹角为θ,若|$\overrightarrow{a}$$-\overrightarrow{b}$|>1,
则($\overrightarrow{a}$-$\overrightarrow{b}$)2>1,
即有$\overrightarrow{a}$2+$\overrightarrow{b}$2-2$\overrightarrow{a}$•$\overrightarrow{b}$=1+1-2cosθ>1,
即为cosθ<$\frac{1}{2}$,
由0≤θ≤π,可得$\frac{π}{3}$<θ≤π.
故选:C.
点评 本题考查向量的数量积的定义和性质,主要是向量的平方即为模的平方,考查余弦函数的图象和性质,以及运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -6 | B. | -2 | C. | 2 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数y=x+$\frac{1}{x}$的最小值为2 | B. | 函数y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$的最小值为2 | ||
| C. | 函数y=2-x-$\frac{4}{x}$(x>0)的最大值为-2 | D. | 函数y=2-x-$\frac{4}{x}$(x>0)的最小值为-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 22016-1 | B. | 22016+1 | C. | 22017-1 | D. | 22017+1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com