精英家教网 > 高中数学 > 题目详情
5.下列命题中,正确的是(  )
A.函数y=x+$\frac{1}{x}$的最小值为2B.函数y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$的最小值为2
C.函数y=2-x-$\frac{4}{x}$(x>0)的最大值为-2D.函数y=2-x-$\frac{4}{x}$(x>0)的最小值为-2

分析 根据基本不等式即可判断.

解答 解:对于A:函数y=x+$\frac{1}{x}$无最小值,故A错误,
对于B:函数y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$=$\frac{{x}^{2}+2+1}{\sqrt{{x}^{2}+2}}$=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$≥2,当且仅当x2=-1时取等号,显然不成立,故B成立,
对于函数y=2-x-$\frac{4}{x}$(x>0)=2-(x+$\frac{4}{x}$)≤2-2$\sqrt{x•\frac{4}{x}}$=-2,当且仅当x=2时取等号,故最大值为-2,故C正确,D错误,
故选:C

点评 本题考查了基本不等式的应用,关键掌握一正二定三相等,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,焦距为2,过点F2作直线l交椭圆于M、N两点,△F1MN的周长为8.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l分别交直线y=$\frac{c}{a}$x,y=-$\frac{c}{a}$x于P,Q两点,求$\frac{{S}_{△OMN}}{|PQ|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设向量$\overrightarrow a=({1,2m}),\overrightarrow b=({m+1,1}),\overrightarrow c=({2,m})$,若$({\overrightarrow a+\overrightarrow c})$⊥$\overrightarrow b$则$|{\overrightarrow a}|$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)设${(1+x+{x^2})^3}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_6}{x^6}$,求a2,a3
(2)设$x={(25+2\sqrt{155})^{20}}+{(25+2\sqrt{155})^{17}}$,其x的整数部分的个位数字.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax3-bx+2(a>0)
(1)在x=1时有极值0,试求函数f(x)的解析式;
(2)求f(x)在x=2处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{\frac{1}{2}}x,x>0}\end{array}\right.$,则f(f(4))=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\overrightarrow{a}$与$\overrightarrow{b}$均为单位向量,其夹角为θ,若|$\overrightarrow{a}$$-\overrightarrow{b}$|>1,则θ的取值范围是(  )
A.$\frac{π}{6}$<θ$≤\frac{π}{2}$B.$\frac{π}{3}$<θ$≤\frac{π}{2}$C.$\frac{π}{3}$<θ≤πD.$\frac{π}{6}$<θ≤π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}满足${2^{{a_{n-1}}}}+{2^{{a_{n+1}}}}={2^{1+{a_n}}},n≥2,n∈{N^*}$,且a1=1,a2=2,则a16=(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若f1(x)=sinx,f2(x)=f1′(x),f3(x)=f2′(x),…fk+1(x)=fk′(x),则f2007($\frac{π}{3}$),(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案