精英家教网 > 高中数学 > 题目详情
16.设向量$\overrightarrow a=({1,2m}),\overrightarrow b=({m+1,1}),\overrightarrow c=({2,m})$,若$({\overrightarrow a+\overrightarrow c})$⊥$\overrightarrow b$则$|{\overrightarrow a}|$=$\sqrt{2}$.

分析 运用向量的加减运算和向量垂直的条件:数量积为0,解方程可得m,再由向量模的公式,计算即可得到所求值.

解答 解:向量$\overrightarrow a=({1,2m}),\overrightarrow b=({m+1,1}),\overrightarrow c=({2,m})$,
若$({\overrightarrow a+\overrightarrow c})$⊥$\overrightarrow b$,
可得$\overrightarrow{b}$•($\overrightarrow{a}$+$\overrightarrow{c}$)=0,
即有(m+1,1)•(3,3m)=0,
即为3(m+1)+3m=0,
解得m=-$\frac{1}{2}$,
则$|{\overrightarrow a}|$=$\sqrt{{1}^{2}+(-1)^{2}}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查向量的数量积的坐标表示和向量垂直的条件:数量积为0,以及向量模的计算,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知三个学生A、B、C能独立解出一道数学题的概率分别是0.6、0.5、0.4,现让这三个学生各自独立解这道数学题,则该题被解出的概率为(  )
A.0.88B.0.90C.0.92D.0.95

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足$\overrightarrow{a}$=(m,2),$\overrightarrow{b}$=(3,-1),且($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则实数m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设F1,F2分别为椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$-$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1、b1>0)的公共焦点,它们在第一象限内交于点M,∠F1MF2=90°,若MF1•MF2=ab,则双曲线C1的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax-lnx-a(a∈R).
(1)讨论函数f(x)的单调性;
(2)若a∈(0,+∞),x∈(1,+∞),证明:f(x)<axlnx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{{{3^x}+a}}{{{3^x}+1}}$为奇函数.
(1)求a的值;
(2)判断函数f(x)的单调性,并根据函数单调性的定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.二次不等式ax2+bx+1>0的解集为$\left\{{x\left|{-1<x<\frac{1}{2}}\right.}\right\}$,则ab的值为(  )
A.-6B.-2C.2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列命题中,正确的是(  )
A.函数y=x+$\frac{1}{x}$的最小值为2B.函数y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$的最小值为2
C.函数y=2-x-$\frac{4}{x}$(x>0)的最大值为-2D.函数y=2-x-$\frac{4}{x}$(x>0)的最小值为-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数$z=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,则复数$\overline z+|z|$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案