精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=ax-lnx-a(a∈R).
(1)讨论函数f(x)的单调性;
(2)若a∈(0,+∞),x∈(1,+∞),证明:f(x)<axlnx.

分析 (1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(2)令g(x)=f(x)-axlnx,a∈(0,+∞),x∈(1,+∞),求出函数的导数,通过讨论a的范围,结合函数的单调性证明即可.

解答 解:(1)f′(x)=a-$\frac{1}{x}$=$\frac{ax-1}{x}$,
当a≤0时,ax-1<0,从而f'(x)<0,函数f(x)在(0,+∞)单调递减;
当a>0时,若0<x<$\frac{1}{a}$,则ax-1<0,从而f'(x)<0,
若x>$\frac{1}{a}$,则ax-1>0,从而f'(x)>0,
函数在(0,$\frac{1}{a}$)单调递减,在($\frac{1}{a}$,+∞)单调递增.
(2)令g(x)=f(x)-axlnx,a∈(0,+∞),x∈(1,+∞),
则g′(x)=-$\frac{1}{x}$-alnx,g″(x)=$\frac{1-ax}{{x}^{2}}$,
令g″(x)=0,解得:x=$\frac{1}{a}$,
①$\frac{1}{a}$≤1即a≥1时,g″(x)<0,g′(x)在(1,+∞)递减,
g′(x)<g′(1)=-1<0,故g(x)在(1,+∞)递减,
g(x)<g(1)=0,成立;
②$\frac{1}{a}$>1即0<a<1时,
令g″(x)>0,解得:1<x<$\frac{1}{a}$,
令g″(x)<0,解得:x>$\frac{1}{a}$,
故g′(x)在(1,$\frac{1}{a}$)递增,在($\frac{1}{a}$,+∞)递减,
∴g′(x)<g′($\frac{1}{a}$)=2lna-a+1,
令h(a)=2lna-a+1,(0<a<1),
则h′(a)=$\frac{2-a}{a}$>0,h(a)在(0,1)递增,
故h(a)<h(1)=0,
故g′(x)<0,g(x)在(1,+∞)递减,
g(x)<g(1)=0,成立;
综上,a∈(0,+∞),x∈(1,+∞),f(x)<axlnx.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.y=Asin(ωx+φ)(ω>0,φ∈(0,π)的图象的一段如图所示,它的解析式是y=$\frac{2}{3}$sin(2x+$\frac{2π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若a,b,c,d∈R,则下列结论正确的是(  )
A.若a>b,则a2>b2B.若a>b,c>d,则ac>bd
C.若a<b<0,则$\frac{1}{a}$<$\frac{1}{b}$D.若a>b>0,c<d<0,则$\frac{a}{d}$<$\frac{b}{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数 f(x)=2sin2ωx+2sinωxcosωx-1(ω>0)的周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在[$\frac{π}{6}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.《人民日报》(2016年08月11日24版)指出,网络语言是近年来新兴的一个语言品种,因为使用人多、覆盖面广、传播力强、影响力大,特别需要研究,但更要警惕网络语言“粗鄙化”、“低俗化”,某调查机构为了解网民对“规范网络用语”的态度是否与性别有关,从某地网民中随机抽取30名进行了问卷调查,得到如下列联表
男性女性合计
反对10
支持8
合计30
已知在这30人中随机抽取1人抽到反对“规范网络用语”的网民的概率是$\frac{7}{15}$.
(1)请将上面的列联表补充完整;
(2)根据题目提供的资料分析,是否有95%的把握认为反对“规范网络用语”与性别有关?并说明理由;
(3)若从这30人中的女网民中随机抽取2人参加一项活动,记反对“规范网络用语”的人数为ξ,求ξ的分布列和数学期望
附参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
 P(K2≥k00.150.100.050.0250,0100.0050,001
 k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设向量$\overrightarrow a=({1,2m}),\overrightarrow b=({m+1,1}),\overrightarrow c=({2,m})$,若$({\overrightarrow a+\overrightarrow c})$⊥$\overrightarrow b$则$|{\overrightarrow a}|$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解下列各式中的n值.
(1)90${A}_{n}^{2}$=${A}_{n}^{4}$;(2)${A}_{n}^{4}$•${A}_{n-4}^{n-4}$=42${A}_{n-2}^{n-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax3-bx+2(a>0)
(1)在x=1时有极值0,试求函数f(x)的解析式;
(2)求f(x)在x=2处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知随机变量ξ~B(36,p),且E(ξ)=12,则D(4ξ+3)=128.

查看答案和解析>>

同步练习册答案