精英家教网 > 高中数学 > 题目详情
3.解下列各式中的n值.
(1)90${A}_{n}^{2}$=${A}_{n}^{4}$;(2)${A}_{n}^{4}$•${A}_{n-4}^{n-4}$=42${A}_{n-2}^{n-2}$.

分析 (1)利用排列数公式得到90n(n-1)=n(n-1)(n-2)(n-3),由此能求出n.
(2)利用排列数公式和组合数公式得到$\frac{n!}{(n-4)!}•(n-4)!=42(n-2)!$,从而n(n-1)=42,由此能求出n.

解答 解:(1)∵90${A}_{n}^{2}$=${A}_{n}^{4}$,
∴90n(n-1)=n(n-1)(n-2)(n-3),
∴n2-5n-84=0,
∴(n-12)(n+7)=0,
解得n=12或n=-7(舍).
∴n=12.
(2)∵${A}_{n}^{4}$•${A}_{n-4}^{n-4}$=42${A}_{n-2}^{n-2}$,
∴$\frac{n!}{(n-4)!}•(n-4)!=42(n-2)!$,
∴n(n-1)=42,∴n2-n-42=0,
解得n=7或n=-6(舍),
∴n=7.

点评 本题考查方程的解法,考查排列数公式、组合数公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0,$-\frac{π}{2}$$<φ<\frac{π}{2}$)的部分图象如图所示
(Ⅰ)求A,ω,φ的值;
(Ⅱ)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.x,y 满足约束条件$\left\{\begin{array}{l}x+y-2≤0\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,若 z=y-ax 取得最大值的最优解不唯一,则实数 a 的值为(  )
A.$\frac{1}{2}$或-1B.2 或$\frac{1}{2}$C.2 或1D.2 或-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax-lnx-a(a∈R).
(1)讨论函数f(x)的单调性;
(2)若a∈(0,+∞),x∈(1,+∞),证明:f(x)<axlnx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\frac{|{x}^{2}-1|}{x-1}$-3x+2的零点的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.二次不等式ax2+bx+1>0的解集为$\left\{{x\left|{-1<x<\frac{1}{2}}\right.}\right\}$,则ab的值为(  )
A.-6B.-2C.2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在正方体ABCD-A1B1C1D1中,棱长为1,点P为线段A1C上的动点(包含线段端点),则下列结论正确的①②④
①当$\overrightarrow{{A_1}C}=3\overrightarrow{{A_1}P}$时,D1P∥平面BDC1
②当$\overrightarrow{{A_1}C}=3\overrightarrow{{A_1}P}$时,A1C⊥平面D1AP;
③∠APD1的最大值为90°;
④AP+PD1的最小值为$\frac{{2\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-ax+b.
(1)若f(x)在x=2有极小值1-e2,求实数a,b的值.
(2)若f(x)在定义域R内单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.要得到函数y=3sin(2x+$\frac{π}{5}$)图象,只需把函数y=3sin2x图象(  )
A.向左平移$\frac{π}{5}$个单位B.向右平移$\frac{π}{5}$个单位
C.向左平移$\frac{π}{10}$个单位D.向右平移$\frac{π}{10}$个单位

查看答案和解析>>

同步练习册答案