精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0,$-\frac{π}{2}$$<φ<\frac{π}{2}$)的部分图象如图所示
(Ⅰ)求A,ω,φ的值;
(Ⅱ)求f(x)的单调增区间.

分析 (Ⅰ)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(Ⅱ)由题意利用正弦函数的单调区间,求得f(x)的单调增区间.

解答 解:(Ⅰ)根据函数f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0,$-\frac{π}{2}$$<φ<\frac{π}{2}$)的部分图象,
可得A=1,$\frac{T}{2}$=3-(-1)=4=$\frac{1}{2}$•$\frac{2π}{ω}$,∴ω=$\frac{π}{4}$.
结合五点法作图可得$\frac{π}{4}$•(-1)+φ=0,∴φ=$\frac{π}{4}$,f(x)=sin($\frac{π}{4}$x+$\frac{π}{4}$).
(Ⅱ)令2kπ-$\frac{π}{2}$≤$\frac{π}{4}$x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得8k-3≤x≤8k+1,可得函数的增区间为[8k-3,8k+1],k∈Z.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值;还考查了正弦函数的单调区间,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=acosB+bsinA.
(1)求A;
(2)若a=2,b=c,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z=a2-a+ai,若z是纯虚数,则实数a等于(  )
A.2B.1C.0或1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.y=Asin(ωx+φ)(ω>0,φ∈(0,π)的图象的一段如图所示,它的解析式是y=$\frac{2}{3}$sin(2x+$\frac{2π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知甲、乙、丙、丁、戊五人站在图中矩形的四个顶点及中心,要求甲、乙必须站在同一条对角线上,且丙不站在中心,则不同的站法有(  )
A.16种B.48种C.64种D.84种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=x2-2lnx的单调增区间为(  )
A.(-∞,-1)∪(0,1)B.(1,+∞)C.(-1,0)∪(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.5个人排成一排,在下列情况下,各有多少种不同排法?
(Ⅰ)甲不在排头,也不在排尾;
(Ⅱ)甲、乙、丙三人必须在一起.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若a,b,c,d∈R,则下列结论正确的是(  )
A.若a>b,则a2>b2B.若a>b,c>d,则ac>bd
C.若a<b<0,则$\frac{1}{a}$<$\frac{1}{b}$D.若a>b>0,c<d<0,则$\frac{a}{d}$<$\frac{b}{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解下列各式中的n值.
(1)90${A}_{n}^{2}$=${A}_{n}^{4}$;(2)${A}_{n}^{4}$•${A}_{n-4}^{n-4}$=42${A}_{n-2}^{n-2}$.

查看答案和解析>>

同步练习册答案