分析 (1)由已知及正弦定理,三角形内角和定理,两角和的正弦函数公式,同角三角函数基本关系式可得:tanA=1,结合范围A∈(0,π),可求A的值.
(2)由三角形面积公式及余弦定理可求b2的值,进而利用三角形面积公式即可计算得解.
解答 (本小题满分12分)
解:(1)由c=acosB+bsinA及正弦定理可得:sinC=sinAcosB+sinBsinA.…(2分)
在△ABC中,C=π-A-B,
所以sinC=sin(A+B)=sinAcosB+cosAsinB.…(4分)
由以上两式得sinA=cosA,即tanA=1,…(5分)
又A∈(0,π),
所以A=$\frac{π}{4}$. …(6分)
(2)由于S△ABC=$\frac{1}{2}$bcsinA=$\frac{\sqrt{2}}{4}$bc,…(7分)
由a=2,及余弦定理得:4=b2+c2-2bccosB=b2+c2-$\sqrt{2}bc$,…(8分)
因为b=c,
所以4=2b2-$\sqrt{2}$b2,即b2=$\frac{4}{2-\sqrt{2}}$=4$+2\sqrt{2}$,…(10分)
故△ABC的面积S=$\frac{\sqrt{2}}{4}$bc=$\frac{\sqrt{2}}{4}$b2=$\sqrt{2}+1$. …(12分)
点评 本题主要考查了正弦定理,三角形内角和定理,两角和的正弦函数公式,同角三角函数基本关系式,三角形面积公式及余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{3}$ | B. | $\frac{5π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com