精英家教网 > 高中数学 > 题目详情
1.已知随机变量ξ~B(36,p),且E(ξ)=12,则D(4ξ+3)=128.

分析 根据题意求出p、D(ξ)的值,再根据公式计算D(4ξ+3)的值.

解答 解:随机变量ξ~B(36,p),且E(ξ)=12,
∴n=36,
np=36p=12,
解得p=$\frac{1}{3}$,
∴D(ξ)=np(1-p)=36×$\frac{1}{3}$×(1-$\frac{1}{3}$)=8,
∴D(4ξ+3)=42×8=128.
故答案为:128.

点评 本题考查了离散型随机变量的期望与方差的计算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax-lnx-a(a∈R).
(1)讨论函数f(x)的单调性;
(2)若a∈(0,+∞),x∈(1,+∞),证明:f(x)<axlnx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-ax+b.
(1)若f(x)在x=2有极小值1-e2,求实数a,b的值.
(2)若f(x)在定义域R内单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,且$\overrightarrow{a}$$•\overrightarrow{b}$=-$\frac{1}{2}$
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ
(2)求|$\overrightarrow{a}$$-2\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若方程ax2+bx+1=0的两个根分别为$\frac{1}{2}$和1,则不等式x2+bx+a<0的解集为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数$z=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,则复数$\overline z+|z|$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.要得到函数y=3sin(2x+$\frac{π}{5}$)图象,只需把函数y=3sin2x图象(  )
A.向左平移$\frac{π}{5}$个单位B.向右平移$\frac{π}{5}$个单位
C.向左平移$\frac{π}{10}$个单位D.向右平移$\frac{π}{10}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设复数z=$\frac{1+i}{1-i}$,则$\overline{z}$的实部是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y(分钟)与车辆进入该路段的时刻t之间的关系可近似地用如下函数给出:
y=$\left\{\begin{array}{l}{-\frac{1}{8}{t}^{3}-\frac{3}{4}{t}^{2}+36t-\frac{629}{4},6≤t≤9}\\{\frac{1}{8}t+\frac{59}{4},9≤t≤10}\\{-3{t}^{2}+66t-345,10<t≤12}\end{array}\right.$
求从上午6点到中午12点,通过该路段用时最多的时刻.

查看答案和解析>>

同步练习册答案