精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=ax3-bx+2(a>0)
(1)在x=1时有极值0,试求函数f(x)的解析式;
(2)求f(x)在x=2处的切线方程.

分析 (1)求出f(x)的导数,可得f(1)=0,且f′(1)=0,得到a,b的方程,解方程可得a,b的值,进而得到f(x)的解析式;
(2)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求切线的方程.

解答 解:(1)函数f(x)=ax3-bx+2的导数为f′(x)=3ax2-b,
在x=1时有极值0,可得f(1)=0,且f′(1)=0,
即为a-b+2=0,且3a-b=0,
解得a=1,b=3,
可得f(x)=x3-3x+2;
(2)f′(x)=3ax2-b,
可得f(x)在x=2处的切线斜率为12a-b,
切点为(2,8a-2b+2),
即有f(x)在x=2处的切线方程为y-(8a-2b+2)=(12a-b)(x-2),
化为(12a-b)x-y-16a+2=0.

点评 本题考查导数的运用:求切线的方程和极值,考查导数的几何意义,正确求导和运用直线方程是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.双曲线x2-2y2=4的离心率为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax-lnx-a(a∈R).
(1)讨论函数f(x)的单调性;
(2)若a∈(0,+∞),x∈(1,+∞),证明:f(x)<axlnx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.二次不等式ax2+bx+1>0的解集为$\left\{{x\left|{-1<x<\frac{1}{2}}\right.}\right\}$,则ab的值为(  )
A.-6B.-2C.2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在正方体ABCD-A1B1C1D1中,棱长为1,点P为线段A1C上的动点(包含线段端点),则下列结论正确的①②④
①当$\overrightarrow{{A_1}C}=3\overrightarrow{{A_1}P}$时,D1P∥平面BDC1
②当$\overrightarrow{{A_1}C}=3\overrightarrow{{A_1}P}$时,A1C⊥平面D1AP;
③∠APD1的最大值为90°;
④AP+PD1的最小值为$\frac{{2\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列命题中,正确的是(  )
A.函数y=x+$\frac{1}{x}$的最小值为2B.函数y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$的最小值为2
C.函数y=2-x-$\frac{4}{x}$(x>0)的最大值为-2D.函数y=2-x-$\frac{4}{x}$(x>0)的最小值为-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-ax+b.
(1)若f(x)在x=2有极小值1-e2,求实数a,b的值.
(2)若f(x)在定义域R内单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,且$\overrightarrow{a}$$•\overrightarrow{b}$=-$\frac{1}{2}$
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ
(2)求|$\overrightarrow{a}$$-2\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设复数z=$\frac{1+i}{1-i}$,则$\overline{z}$的实部是0.

查看答案和解析>>

同步练习册答案