精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)

已知函数是奇函数,的定义域为.当时, .(e为自然对数的底数).

(1)若函数在区间上存在极值点,求实数的取值范围;

(2)如果当x≥1时,不等式恒成立,求实数的取值范围.

【答案】(1);(2).

【解析】

(1)根据题意求出x>0时函数的解析式,对函数求导,得到唯一的极值点1,使得1在所给区间内即可;(2),对函数求导研究函数的单调性得到函数的最值进而求解.

设x>0时,结合函数的奇偶性得到:

(1)当x>0时,有

所以在(0,1)上单调递增,在上单调递减,函数处取得唯一的极值.由题意,且,解得所求实数的取值范围为

(2)当时,

,由题意,上恒成立

,则,当且仅当时取等号.

所以上单调递增,

因此, 上单调递增,

所以.所求实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场举行促销活动,有两个摸奖箱,箱内有一个“”号球、两个“”号球、三个“”号球、四个无号球,箱内有五个“”号球、五个“”号球,每次摸奖后放回,消费额满元有一次箱内摸奖机会,消费额满元有一次箱内摸奖机会,摸得有数字的球则中奖,“”号球奖元、“”号球奖元、“”号球奖元,摸得无号球则没有奖金.

(Ⅰ)经统计,消费额服从正态分布,某天有为顾客,请估计消费额(单位:元)在区间内并中奖的人数;

(Ⅱ)某三位顾客各有一次箱内摸奖机会,求其中中奖人数的分布列;

(Ⅲ)某顾客消费额为元,有两种摸奖方法,方法一:三次箱内摸奖机会;方法二:一次箱内摸奖机会,请问:这位顾客选哪一种方法所得奖金的期望值较大.

附:若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个生产公司投资A生产线500万元,每万元可创造利润万元,该公司通过引进先进技术,在生产线A投资减少了x万元,且每万元的利润提高了;若将少用的x万元全部投入B生产线,每万元创造的利润为万元,其中

若技术改进后A生产线的利润不低于原来A生产线的利润,求x的取值范围;

若生产线B的利润始终不高于技术改进后生产线A的利润,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且与定直线相切.

1)求动圆圆心的轨迹的方程;

2)过点的任一条直线与轨迹交于不同的两点,试探究在轴上是否存在定点(异于点),使得?若存在,求点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为;1小时以上且不超过2小时离开的概率分别为;两人滑雪时间都不会超过3小时.

(1)求甲、乙两人所付滑雪费用相同的概率;

(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若有两个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的值域为,记函数.

1)求实数的值;

2)存在使得不等式成立,求实数的取值范围;

3)若关于的方程5个不等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C,直线1过原点O

1)若直线l与圆C相切,求直线l的斜率;

2)若直线l与圆C交于AB两点,点P的坐标为,若.求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为t为参数),曲线C2的参数方程为(α为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.

1)求曲线C1C2的极坐标方程;

2)直线l的极坐标方程为,直线l与曲线C1C2分别交于不同于原点的AB两点,求|AB|的值.

查看答案和解析>>

同步练习册答案