精英家教网 > 高中数学 > 题目详情

【题目】如图1为等边三角形,分别为的中点,的中点,,将沿折起到的位置,使得平面平面

的中点,如图2

1)求证:平面

2)求点到平面的距离.

【答案】1)证明见解析; 2.

【解析】

1取线段的中点,连接,推出四边形为平行四边形,从而,由此能证明平面

2)由题可知,的中点,,则,由于平面平面,利用面面垂直的性质,得出平面,设点到平面的距离为,通过等体积法,求出,即可求得点到平面的距离.

证明:(1)取线段的中点为,连接

中,分别为的中点,

所以

分别是的中点,

所以

所以

所以四边形为平行四边形,

又因为平面平面

所以平面

2)因为的中点,,∴

因为平面平面,平面平面

所以平面

因为为等边三角形,

由图得

设点到平面的距离为

即:

则有

所以点F到平面的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近8年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中

附:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:

1)根据散点图判断,,哪一个适宜作为年销售量关于年宣传费的回归方程类型(给出判断即可,不必说明理由);

2)根据(1)的判断结果及表中数据,建立关于的回归方程;

3)已知这种产品的年利润的关系为,根据(2)的结果回答:当年宣传费时,年销售量及年利润的预报值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数被称为狄利克雷函数,其中为实数集,为有理数集,则关于函数有如下四个命题:①;②函数是偶函数;③任取一个不为零的有理数对任意的恒成立;④存在三个点,使得为等边三角形.其中真命题的个数有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,右顶点为,离心离为,点满足条件

Ⅰ)求的值.

Ⅱ)设过点的直线与椭圆相交于两点,记的面积分别为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面分别为的中点,点在线段上.

Ⅰ)求证:平面

Ⅱ)若的中点,求证:平面

Ⅲ)如果直线与平面所成的角和直线与平面所在的角相等,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种计算机病毒是通过电子邮件进行传播的,下表是某公司前5天监测到的数据:

1

2

3

4

5

被感染的计算机数量(台)

10

20

39

81

160

则下列函数模型中,能较好地反映计算机在第天被感染的数量之间的关系的是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆)的圆心为点直线

(1)若求直线被圆所截得弦长的最大值

(2)若直线是圆心下方的切线上变化时的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=Acos(ωxφ)+B的部分图象如图所示,将函数g(x)的图象保持纵坐标不变,横坐标向右平移个单位长度后得到函数f(x)的图象.求:

(1)函数f(x)在上的值域;

(2)使f(x)≥2成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲同学参加化学竞赛初赛,考试分为笔试、口试、实验三个项目,各单项通过考试的概率依次为,笔试、口试、实验通过考试分别记4分、2分、4分,没通过的项目记0分,各项成绩互不影响.

(Ⅰ)若规定总分不低于8分即可进入复赛,求甲同学进入复赛的概率;

(Ⅱ)记三个项目中通过考试的个数为,求随机变量的分布列和数学期望.

查看答案和解析>>

同步练习册答案