精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
某工厂用7万元钱购买了一台新机器,运输安装费用2千元,每年投保、动力消耗的费用也为2千元,每年的保养、维修、更换易损零件的费用逐年增加,第一年为2千元,第二年为3千元,第三年为4千元,依此类推,即每年增加1千元.问这台机器最佳使用年限是多少年?并求出年平均费用的最小值.(最佳使用年限佳是使年平均费用最小的时间)

这台机器最佳使用年限是12年,年平均费用的最小值为1.55万元

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
(理)对于数列,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为正整数,公比为正整数的无穷等比数列的子数列问题. 为此,他任取了其中三项.
(1) 若成等比数列,求之间满足的等量关系;
(2) 他猜想:“在上述数列中存在一个子数列是等差数列”,为此,他研究了的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;
(3) 他又想:在首项为正整数,公差为正整数的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知数列的首项….
(Ⅰ)证明:数列是等比数列;
(Ⅱ)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知数列满足).
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足),证明:数列是等差数列;
(Ⅲ)证明:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设二次函数,对任意实数恒成立;正数数列满足.
(1)求函数的解析式和值域;
(2)试写出一个区间,使得当时,数列在这个区间上是递增数列,并说明理由;
(3)若已知,求证:数列是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

计算:         

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

”是“”的(    )

A.充分不必要条件  B.必要不充分条件 
C.充要条件  D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{}的前n项和
(Ⅰ)求数列{}的通项公式.
(Ⅱ)求数列{||}的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足,它的前项和为,且.
①求通项,
②若,求数列的前项和的最小值.

查看答案和解析>>

同步练习册答案