精英家教网 > 高中数学 > 题目详情

【题目】大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中成功开设大学先修课程已有两年,共有250人参与学习先修课程.

(Ⅰ)这两年学校共培养出优等生150人,根据下图等高条形图,填写相应列联表,并根据列联表检验能否在犯错的概率不超过0.01的前提下认为学习先修课程与优等生有关系?

优等生

非优等生

总计

学习大学先修课程

250

没有学习大学先修课程

总计

150

(Ⅱ)某班有5名优等生,其中有2名参加了大学生先修课程的学习,在这5名优等生中任选3人进行测试,求这3人中至少有1名参加了大学先修课程学习的概率.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

参考公式:其中

【答案】(1)列联表见解析 有关系(2)

【解析】

(1)根据优等生的人数、学习大学先修课程的人数,结合等高条形图计算数值,填写好表格,计算出的值,比较题目所给参考数据,得出“在犯错误的概率不超过0.01的前提下认为学习先修课程与优等生有关系”这个结论.(2)利用列举法,求得基本事件的众数为种,其中“没有学生参加大学先修课程学习 的情况有种,利用对立事件的概率计算方法,求得至少有名参加了大学先修课程学习的概率.

(1)列联表如下:

优等生

非优等生

总计

学习大学先修课程

50

200

250

没有学习大学先修课程

100

900

1000

总计

150

1100

1250

由列联表可得

因此在犯错误的概率不超过0.01的前提下认为学习先修课程与优等生有关系.

(2)在这5名优等生中,记参加了大学先修课程的学习的2名学生为记没有参加大学先修课程学习的3名学生为.

则所有的抽样情况如下:共10

其中没有学生参加大学先修课程学习的情况有1种,为.

记事件为至少有1名学生参加了大学先修课程的学习,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于数列,若存在常数M>0,对任意的nN*,恒有,则称数列B-数列.

(1)首项为1,公比q()的等比数列是否为B-数列?请说明理由;

(2)Sn是数列{xn}的前n项和,给出下列两组论断:

A组:①数列{xn}B-数列,②数列{xn}不是B-数列

B组:①数列{Sn}B-数列,②数列{Sn}不是B-数列

请以其中一组的一个论断为条件,另一组的一个论断为结论组成一个命题.判断所给命题的真假,并证明你的结论.

(3)若数列{an}、都是B-数列,证明:数列{anbn}也是B-数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数).

1)求的交点的直角坐标;

2)求上的点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),直线与直线平行,且过坐标原点,圆的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求直线和圆的极坐标方程;

(2)设直线和圆相交于点两点,求的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线的参数方程为t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是,曲线的极坐标方程是

1)求直线l和曲线的直角坐标方程,曲线的普通方程;

2)若直线l与曲线和曲线在第一象限的交点分别为PQ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数,其图象关于点对称,且在区间上是单调函数,则的值是( )

A. B. C. D. 无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)过点,倾斜角为的直线l与曲线C相交于MN两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中 为自然对数的底数)

(Ⅰ)若函数无极值,求实数的取值范围;

(Ⅱ)时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班制定了数学学习方案:星期一和星期日分别解决个数学问题,且从星期二开始,每天所解决问题的个数与前一天相比,要么“多一个”要么“持平”要么“少一个”,则在一周中每天所解决问题个数的不同方案共有( )

A. B. C. D.

查看答案和解析>>

同步练习册答案